Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ python / predictor / predictor_test.py






import unittest
import numpy as np
from caffe2.python import workspace, core

from caffe2.proto import caffe2_pb2


class TestPredictor(unittest.TestCase):
    def setUp(self):
        np.random.seed(1)
        self.predict_net = self._predict_net
        self.init_net = self._init_net

    @property
    def _predict_net(self):
        net = caffe2_pb2.NetDef()
        net.name = 'test-predict-net'
        net.external_input[:] = ['A', 'B']
        net.external_output[:] = ['C']
        net.op.extend([
            core.CreateOperator(
                'MatMul',
                ['A', 'B'],
                ['C'],
            )
        ])
        return net.SerializeToString()

    @property
    def _init_net(self):
        net = caffe2_pb2.NetDef()
        net.name = 'test-init-net'
        net.external_output[:] = ['A', 'B']
        net.op.extend([
            core.CreateOperator(
                'GivenTensorFill',
                [],
                ['A'],
                shape=(2, 3),
                values=np.zeros((2, 3), np.float32).flatten().tolist(),
            ),
            core.CreateOperator(
                'GivenTensorFill',
                [],
                ['B'],
                shape=(3, 4),
                values=np.zeros((3, 4), np.float32).flatten().tolist(),
            ),
        ])
        return net.SerializeToString()

    def test_run(self):
        A = np.ones((2, 3), np.float32)
        B = np.ones((3, 4), np.float32)
        predictor = workspace.Predictor(self.init_net, self.predict_net)
        outputs = predictor.run([A, B])
        self.assertEqual(len(outputs), 1)
        np.testing.assert_almost_equal(np.dot(A, B), outputs[0])

    def test_run_map(self):
        A = np.zeros((2, 3), np.float32)
        B = np.ones((3, 4), np.float32)
        predictor = workspace.Predictor(self.init_net, self.predict_net)
        outputs = predictor.run({
            'B': B,
        })
        self.assertEqual(len(outputs), 1)
        np.testing.assert_almost_equal(np.dot(A, B), outputs[0])