from typing import Dict, Any
from torch.fx import ( # type: ignore
GraphModule,
Node,
map_arg
)
from torch.fx.graph import Graph
from ..utils import (
get_combined_dict
)
from .pattern_utils import (
is_match,
get_default_fusion_patterns,
)
from .fusion_patterns import * # noqa: F401
from .quantization_types import Pattern
from typing import Callable, Tuple
class Fuser:
def fuse(self, model: GraphModule,
fuse_custom_config_dict: Dict[str, Any] = None) -> GraphModule:
if fuse_custom_config_dict is None:
fuse_custom_config_dict = {}
input_root = model
input_graph = model.graph
self.modules = dict(input_root.named_modules())
additional_fusion_patterns = \
fuse_custom_config_dict.get("additional_fusion_pattern", {})
fusion_patterns = get_combined_dict(
get_default_fusion_patterns(), additional_fusion_patterns)
# find fusion
fusion_pairs = self._find_matches(
input_root, input_graph, fusion_patterns)
self.fused_graph = Graph()
env: Dict[Any, Any] = {}
def load_arg(a):
return map_arg(a, lambda node: env[node.name])
for node in input_graph.nodes:
root_node, obj = fusion_pairs.get(node.name, (None, None))
if root_node is node:
assert obj is not None
env[node.name] = obj.fuse(self, load_arg)
elif root_node is None:
env[node.name] = self.fused_graph.node_copy(node, load_arg)
# node matched in patterns and is not root is removed here
model = GraphModule(input_root, self.fused_graph)
return model
def _find_matches(
self, root: GraphModule, graph: Graph,
patterns: Dict[Pattern, Callable]
) -> Dict[str, Tuple[Node, FuseHandler]]:
modules = dict(root.named_modules())
match_map : Dict[str, Tuple[Node, FuseHandler]] = {} # node name -> (root_node, match_value)
def apply_match(pattern, node, match):
if isinstance(pattern, tuple):
s, *args = pattern
apply_match(s, node, match)
for subpattern, arg in zip(args, node.args):
apply_match(subpattern, arg, match)
else:
# the first pattern matches will take precedence
if node.name not in match_map:
match_map[node.name] = match
for node in reversed(graph.nodes):
if node.name not in match_map:
for pattern, value in patterns.items():
if is_match(modules, node, pattern):
apply_match(pattern, node, (node, value(self, node)))
return match_map