import collections
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
from hypothesis import given
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
class DNNLowPConcatOpTest(hu.HypothesisTestCase):
@given(
dim1=st.integers(0, 256),
dim2=st.integers(0, 256),
axis=st.integers(0, 1),
in_quantized=st.booleans(),
out_quantized=st.booleans(),
**hu.gcs_cpu_only
)
def test_dnnlowp_concat_int(
self, dim1, dim2, axis, in_quantized, out_quantized, gc, dc
):
# X has scale 1, so exactly represented after quantization
min_ = -100
max_ = min_ + 255
X = np.round(np.random.rand(dim1, dim2) * (max_ - min_) + min_)
X = X.astype(np.float32)
if dim1 >= 1 and dim2 >= 2:
X[0, 0] = min_
X[0, 1] = max_
elif dim2 == 1:
return
# Y has scale 1/2, so exactly represented after quantization
Y = np.round(np.random.rand(dim1, dim2) * 255 / 2 - 64)
Y = Y.astype(np.float32)
if dim1 >= 1 and dim2 >= 2:
Y[0, 0] = -64
Y[0, 1] = 127.0 / 2
Output = collections.namedtuple("Output", ["Z", "op_type", "engine"])
outputs = []
op_engine_list = [
("Concat", ""),
("Concat", "DNNLOWP"),
("Int8Concat", "DNNLOWP"),
]
for op_type, engine in op_engine_list:
net = core.Net("test_net")
do_quantize = "DNNLOWP" in engine and in_quantized
do_dequantize = "DNNLOWP" in engine and out_quantized
if do_quantize:
quantize_x = core.CreateOperator(
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
)
quantize_y = core.CreateOperator(
"Quantize", ["Y"], ["Y_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize_x, quantize_y])
concat = core.CreateOperator(
op_type,
["X_q", "Y_q"] if do_quantize else ["X", "Y"],
["Z_q" if do_dequantize else "Z", "split"],
dequantize_output=not do_dequantize,
engine=engine,
device_option=gc,
axis=axis,
)
net.Proto().op.extend([concat])
if do_dequantize:
dequantize = core.CreateOperator(
"Dequantize", ["Z_q"], ["Z"], engine=engine, device_option=gc
)
net.Proto().op.extend([dequantize])
self.ws.create_blob("X").feed(X, device_option=gc)
self.ws.create_blob("Y").feed(Y, device_option=gc)
self.ws.create_blob("split")
self.ws.run(net)
outputs.append(
Output(Z=self.ws.blobs["Z"].fetch(), op_type=op_type, engine=engine)
)
check_quantized_results_close(outputs)