import collections
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
from hypothesis import given
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
class DNNLowPElementwiseLinearOpTest(hu.HypothesisTestCase):
@given(
N=st.integers(32, 256),
D=st.integers(32, 256),
empty_batch=st.booleans(),
in_quantized=st.booleans(),
out_quantized=st.booleans(),
**hu.gcs_cpu_only
)
def test_dnnlowp_elementwise_linear_int(
self, N, D, empty_batch, in_quantized, out_quantized, gc, dc
):
if empty_batch:
N = 0
# All inputs have scale 1, so exactly represented after quantization
min_ = -100
max_ = min_ + 255
X = np.round(np.random.rand(N, D) * (max_ - min_) + min_)
X = X.astype(np.float32)
if N != 0:
X[0, 0] = min_
X[0, 1] = max_
a = np.round(np.random.rand(D) * 255 - 128).astype(np.float32)
a[0] = -128
a[1] = 127
b = np.round(np.random.rand(D) * 255 - 128).astype(np.float32)
b[0] = -128
b[1] = 127
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
outputs = []
op_engine_list = [
("ElementwiseLinear", ""),
("ElementwiseLinear", "DNNLOWP"),
("Int8ElementwiseLinear", "DNNLOWP"),
]
for op_type, engine in op_engine_list:
net = core.Net("test_net")
do_quantize = "DNNLOWP" in engine and in_quantized
do_dequantize = "DNNLOWP" in engine and out_quantized
if do_quantize:
quantize = core.CreateOperator(
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize])
eltwise_linear = core.CreateOperator(
op_type,
["X_q" if do_quantize else "X", "a", "b"],
["Y_q" if do_dequantize else "Y"],
dequantize_output=not do_dequantize,
engine=engine,
device_option=gc,
)
net.Proto().op.extend([eltwise_linear])
if do_dequantize:
dequantize = core.CreateOperator(
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
)
net.Proto().op.extend([dequantize])
self.ws.create_blob("X").feed(X, device_option=gc)
self.ws.create_blob("a").feed(a, device_option=gc)
self.ws.create_blob("b").feed(b, device_option=gc)
self.ws.run(net)
outputs.append(
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
)
check_quantized_results_close(outputs)