import collections
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server import utils as dnnlowp_utils
from caffe2.quantization.server.dnnlowp_test_utils import (
avoid_vpmaddubsw_overflow_fc,
check_quantized_results_close,
run_conv_or_fc,
)
from hypothesis import given
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
class RowWiseDNNLowPFullyConnectedOpTest(hu.HypothesisTestCase):
# correctness test with no quantization error in inputs
@given(
input_channels=st.sampled_from([3, 4, 5, 8, 16, 32]),
output_channels=st.integers(2, 16),
batch_size=st.integers(0, 16),
in_quantized=st.booleans(),
out_quantized=st.booleans(),
prepack_weight=st.booleans(),
**hu.gcs_cpu_only
)
def test_rowwise_dnnlowp_fully_connected_int(
self,
input_channels,
output_channels,
batch_size,
in_quantized,
out_quantized,
prepack_weight,
gc,
dc,
):
# X has scale 1, so exactly represented after quantization
X_min = -77
X_max = X_min + 255
X = np.round(
np.random.rand(batch_size, input_channels) * (X_max - X_min) + X_min
)
X = X.astype(np.float32)
# input channels 0 and 1 are all X_min to avoid overflow from vpmaddubsw
# when multiplied with W_min and W_max
X[:, 0:2] = X_min
if batch_size != 0:
X[0, 2] = X_max
# Each row of W has scale 1 but with different offset, so row-wise
# quantization shouldn't have any input quantization error.
W = np.zeros((output_channels, input_channels))
W = W.astype(np.float32)
for i in range(output_channels):
W_min = -100 + i
W_max = W_min + 255
W[i, :] = np.round(np.random.rand(input_channels) * (W_max - W_min) + W_min)
W[i, 0] = W_min
W[i, 1] = W_max
# Make sure we won't have overflows from vpmaddubsw instruction used in
# fbgemm
avoid_vpmaddubsw_overflow_fc(
batch_size,
input_channels,
1,
X,
X_min,
X_max,
W[i : i + 1,],
W_min,
W_max,
)
if i % 2 == 0:
W[i, :] = (W[i, :] - W_min) * 2 + W_min
b = np.random.randn(output_channels).astype(np.float32)
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
outputs = []
op_engine_list = [
("FC", ""),
("FC", "DNNLOWP_ROWWISE"),
("FC", "DNNLOWP_ROWWISE_16"),
("Int8FC", "DNNLOWP_ROWWISE"),
]
for op_type, engine in op_engine_list:
init_net = core.Net("test_init_net")
net = core.Net("test_net")
do_quantize = "DNNLOWP" in engine and in_quantized
do_dequantize = "DNNLOWP" in engine and out_quantized
do_prepack_weight = engine == "DNNLOWP_ROWWISE" and prepack_weight
if do_quantize:
quantize = core.CreateOperator(
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize])
X_min = 0 if X.size == 0 else X.min()
X_max = 0 if X.size == 0 else X.max()
x_q_param = dnnlowp_utils.choose_quantization_params(X_min, X_max)
if do_prepack_weight:
inputs = ["W"]
if do_dequantize:
inputs += ["b"]
pack = core.CreateOperator(
"Int8FCPackWeight",
inputs,
["W_packed"],
in_scale=x_q_param.scale,
engine=engine,
)
init_net.Proto().op.extend([pack])
fc = core.CreateOperator(
op_type,
[
"X_q" if do_quantize else "X",
"W_packed" if do_prepack_weight else "W",
"b",
],
["Y_q" if do_dequantize else "Y"],
dequantize_output=not do_dequantize,
engine=engine,
device_option=gc,
)
if do_prepack_weight:
# When pre-packed quantized weight is provided, we can't rescale
# the output dynamically by looking at the range of output of
# each batch, so here we provide the range of output observed
# from fp32 reference implementation
dnnlowp_utils.add_quantization_param_args(fc, outputs[0][0])
net.Proto().op.extend([fc])
if do_dequantize:
dequantize = core.CreateOperator(
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
)
net.Proto().op.extend([dequantize])
run_conv_or_fc(
self, init_net, net, X, W, b, op_type, engine, None, gc, outputs
)
check_quantized_results_close(outputs)