import collections
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
from hypothesis import assume, given
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
class DNNLowPOpPoolTest(hu.HypothesisTestCase):
@given(
stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(1, 20),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
in_quantized=st.booleans(),
**hu.gcs_cpu_only
)
def test_dnnlowp_max_pool(
self,
stride,
pad,
kernel,
size,
input_channels,
batch_size,
order,
in_quantized,
gc,
dc,
):
assume(kernel <= size)
assume(pad < kernel)
C = input_channels
N = batch_size
H = W = size
min_ = -10
max_ = 20
if order == "NCHW":
X = np.round(np.random.rand(N, C, H, W) * (max_ - min_) + min_)
elif order == "NHWC":
X = np.round(np.random.rand(N, H, W, C) * (max_ - min_) + min_)
X = X.astype(np.float32)
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
outputs = []
op_engine_list = [
("MaxPool", ""),
("MaxPool", "DNNLOWP"),
("Int8MaxPool", "DNNLOWP"),
]
for op_type, engine in op_engine_list:
net = core.Net("test_net")
do_quantize = "DNNLOWP" in engine and in_quantized
if do_quantize:
quantize = core.CreateOperator(
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize])
max_pool = core.CreateOperator(
op_type,
["X_q" if do_quantize else "X"],
["Y_q" if engine == "DNNLOWP" else "Y"],
stride=stride,
kernel=kernel,
pad=pad,
order=order,
engine=engine,
device_option=gc,
)
net.Proto().op.extend([max_pool])
if engine == "DNNLOWP":
dequantize = core.CreateOperator(
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
)
net.Proto().op.extend([dequantize])
self.ws.create_blob("X").feed(X, device_option=gc)
self.ws.run(net)
outputs.append(
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
)
# Y_i = max(X_j) so the only error is in quantization of inputs
check_quantized_results_close(outputs, ref=X)
@given(
ndim=st.integers(2, 3),
stride=st.integers(1, 1),
pad=st.integers(0, 0),
kernel=st.integers(1, 5),
size=st.integers(2, 2),
input_channels=st.integers(1, 1),
batch_size=st.integers(2, 2),
order=st.sampled_from(["NCHW", "NHWC"]),
in_quantized=st.booleans(),
**hu.gcs_cpu_only
)
def test_dnnlowp_average_pool(
self,
ndim,
stride,
pad,
kernel,
size,
input_channels,
batch_size,
order,
in_quantized,
gc,
dc,
):
kernel = 2 # Only kernel size 2 is supported
assume(kernel <= size)
assume(pad < kernel)
C = input_channels
N = batch_size
strides = (stride,) * ndim
pads = (pad,) * (ndim * 2)
kernels = (kernel,) * ndim
sizes = (size,) * ndim
# X has scale 1, so no input quantization error
min_ = -100
max_ = min_ + 255
if order == "NCHW":
X = np.round(np.random.rand(*((N, C) + sizes)) * (max_ - min_) + min_)
X = X.astype(np.float32)
X[(0,) * (ndim + 2)] = min_
X[(0,) * (ndim + 1) + (1,)] = max_
elif order == "NHWC":
X = np.round(np.random.rand(*((N,) + sizes + (C,))) * (max_ - min_) + min_)
X = X.astype(np.float32)
X[(0,) * (ndim + 2)] = min_
X[(0, 1) + (0,) * ndim] = max_
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
outputs = []
op_engine_list = [
("AveragePool", ""),
("AveragePool", "DNNLOWP"),
("Int8AveragePool", "DNNLOWP"),
]
for op_type, engine in op_engine_list:
net = core.Net("test_net")
do_quantize = "DNNLOWP" in engine and in_quantized
if do_quantize:
quantize = core.CreateOperator(
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
)
net.Proto().op.extend([quantize])
max_pool = core.CreateOperator(
op_type,
["X_q" if do_quantize else "X"],
["Y_q" if engine == "DNNLOWP" else "Y"],
strides=strides,
kernels=kernels,
pads=pads,
order=order,
engine=engine,
device_option=gc,
)
net.Proto().op.extend([max_pool])
if engine == "DNNLOWP":
dequantize = core.CreateOperator(
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
)
net.Proto().op.extend([dequantize])
self.ws.create_blob("X").feed(X, device_option=gc)
self.ws.run(net)
outputs.append(
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
)
check_quantized_results_close(outputs)