r"""Importing this file includes common utility methods and base clases for
checking quantization api and properties of resulting modules.
"""
import torch
import torch.nn as nn
import torch.nn.quantized as nnq
import torch.nn.quantized.dynamic as nnqd
from torch.nn.intrinsic import _FusedModule
import torch.distributed as dist
from torch.testing._internal.common_utils import TestCase
from torch.quantization import QuantWrapper, QuantStub, DeQuantStub, \
default_qconfig, default_dynamic_qconfig, default_per_channel_qconfig, QConfig, default_observer, default_weight_observer, \
propagate_qconfig_, convert, get_default_qconfig, quantize_dynamic_jit, quantize_jit, float_qparams_weight_only_qconfig, \
get_default_qat_qconfig, PerChannelMinMaxObserver, default_dynamic_quant_observer, QConfigDynamic, QuantType
from torch.quantization.quantization_mappings import (
get_default_dynamic_quant_module_mappings,
get_default_qconfig_propagation_list,
get_default_qat_module_mappings,
)
try:
# graph mode quantization based on fx
from torch.quantization.quantize_fx import (
prepare_fx,
prepare_qat_fx,
convert_fx,
)
HAS_FX = True
except ImportError:
HAS_FX = False
import copy
import io
import functools
import time
import os
import unittest
import numpy as np
from torch.testing import FileCheck
class NodeSpec:
''' Used for checking GraphModule Node
'''
def __init__(self, op, target):
'''
op: call_function | call_module
target:
for call_function, target would be a function
for call_module, target would be the type of PyTorch module
'''
self.op = op
self.target = target
@classmethod
def call_function(cls, target):
return NodeSpec('call_function', target)
@classmethod
def call_method(cls, target):
return NodeSpec('call_method', target)
@classmethod
def call_module(cls, target):
return NodeSpec('call_module', target)
def __hash__(self):
return hash((self.op, self.target))
def __eq__(self, other):
if not isinstance(other, NodeSpec):
return NotImplemented
return self.op == other.op and self.target == other.target
def __repr__(self):
return repr(self.op) + " " + repr(self.target)
def test_only_eval_fn(model, calib_data):
r"""
Default evaluation function takes a torch.utils.data.Dataset or a list of
input Tensors and run the model on the dataset
"""
for inp in calib_data:
output = model(*inp)
_default_loss_fn = torch.nn.CrossEntropyLoss()
def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn):
r"""
Default train function takes a torch.utils.data.Dataset and train the model
on the dataset
"""
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
train_loss, correct, total = 0, 0, 0
for i in range(10):
model.train()
for data, target in train_data:
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return train_loss, correct, total
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches):
model.train()
cnt = 0
for image, target in data_loader:
start_time = time.time()
print('.', end='')
cnt += 1
image, target = image.to(device), target.to(device)
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc1, acc5 = accuracy(output, target, topk=(1, 5))
if cnt >= ntrain_batches:
return
return
def ddp_setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def ddp_cleanup():
dist.destroy_process_group()
def run_ddp(rank, world_size, prepared):
ddp_setup(rank, world_size)
prepared.cuda()
prepared = torch.nn.parallel.DistributedDataParallel(prepared, device_ids=[rank])
prepared.to(rank)
model_with_ddp = prepared
optimizer = torch.optim.SGD(model_with_ddp.parameters(), lr=0.0001)
train_one_epoch(model_with_ddp, criterion, optimizer, dataset, rank, 1)
ddp_cleanup()
def convert_dynamic(module):
convert(module, get_default_dynamic_quant_module_mappings(), inplace=True)
def prepare_dynamic(model, qconfig_dict=None):
propagate_qconfig_(model, qconfig_dict)
def _make_conv_test_input(
batch_size, in_channels_per_group, input_feature_map_size,
out_channels_per_group, groups, kernel_size, X_scale, X_zero_point, W_scale,
W_zero_point, use_bias, use_channelwise,
):
in_channels = in_channels_per_group * groups
out_channels = out_channels_per_group * groups
(X_value_min, X_value_max) = (0, 4)
X_init = torch.randint(
X_value_min, X_value_max,
(batch_size, in_channels,) + input_feature_map_size)
X = X_scale * (X_init - X_zero_point).float()
X_q = torch.quantize_per_tensor(
X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)
W_scale = W_scale * out_channels
W_zero_point = W_zero_point * out_channels
# Resize W_scale and W_zero_points arrays equal to out_channels
W_scale = W_scale[:out_channels]
W_zero_point = W_zero_point[:out_channels]
# For testing, we use small values for weights and for activations so that
# no overflow occurs in vpmaddubsw instruction. If the overflow occurs in
# qconv implementation and if there is no overflow.
# In reference we can't exactly match the results with reference.
# Please see the comment in qconv implementation file
# aten/src/ATen/native/quantized/cpu/qconv.cpp for more details.
(W_value_min, W_value_max) = (-5, 5)
# The operator expects them in the format
# (out_channels, in_channels/groups,) + kernel_size
W_init = torch.randint(
W_value_min, W_value_max,
(out_channels, in_channels_per_group,) + kernel_size)
b_init = torch.randint(0, 10, (out_channels,))
if use_channelwise:
W_shape = (-1, 1) + (1,) * len(kernel_size)
W_scales_tensor = torch.tensor(W_scale, dtype=torch.float)
W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float)
W = W_scales_tensor.reshape(*W_shape) * (
W_init.float() - W_zero_points_tensor.reshape(*W_shape)).float()
b = X_scale * W_scales_tensor * b_init.float()
W_q = torch.quantize_per_channel(
W, W_scales_tensor.double(), W_zero_points_tensor.long(), 0,
dtype=torch.qint8)
else:
W = W_scale[0] * (W_init - W_zero_point[0]).float()
b = X_scale * W_scale[0] * b_init.float()
W_q = torch.quantize_per_tensor(
W, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8)
return (X, X_q, W, W_q, b if use_bias else None)
def skipIfNoFBGEMM(fn):
reason = 'Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs with instruction set support AVX2 or newer.'
if isinstance(fn, type):
if 'fbgemm' not in torch.backends.quantized.supported_engines:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = reason
return fn
@functools.wraps(fn)
def wrapper(*args, **kwargs):
if 'fbgemm' not in torch.backends.quantized.supported_engines:
raise unittest.SkipTest(reason)
else:
fn(*args, **kwargs)
return wrapper
try:
import torchvision # noqa: F401
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skip_if_no_torchvision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
def get_script_module(model, tracing, data):
return torch.jit.trace(model, data) if tracing else torch.jit.script(model)
def lengths_to_offsets(t, offset_type=np.int64, use_begin_offset=True):
"""
Convert lengths to offsets for embedding_bag
"""
tt = np.zeros((t.shape[0] + 1,), dtype=offset_type)
tt[1:] = t
tt = torch.from_numpy(np.cumsum(tt, dtype=offset_type))
if use_begin_offset:
return tt[:-1]
return tt[1:]
# QuantizationTestCase used as a base class for testing quantization on modules
class QuantizationTestCase(TestCase):
def setUp(self):
super().setUp()
self.calib_data = [[torch.rand(2, 5, dtype=torch.float)] for _ in range(2)]
self.train_data = [[torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)] for _ in range(2)]
self.img_data_1d = [[torch.rand(2, 3, 10, dtype=torch.float)]
for _ in range(2)]
self.img_data_2d = [[torch.rand(1, 3, 10, 10, dtype=torch.float)]
for _ in range(2)]
self.img_data_3d = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float)]
for _ in range(2)]
self.img_data_1d_train = [[torch.rand(2, 3, 10, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_2d_train = [[torch.rand(1, 3, 10, 10, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_3d_train = [[torch.rand(1, 3, 5, 5, 5, dtype=torch.float),
torch.randint(0, 1, (1,), dtype=torch.long)]
for _ in range(2)]
self.img_data_dict = {1 : self.img_data_1d,
2 : self.img_data_2d,
3 : self.img_data_3d}
# Quant types that produce statically quantized ops
self.static_quant_types = [QuantType.STATIC, QuantType.QAT]
# All quant types for (fx based) graph mode quantization
self.all_quant_types = [QuantType.DYNAMIC, QuantType.STATIC, QuantType.QAT]
def checkNoPrepModules(self, module):
r"""Checks the module does not contain child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertFalse(hasattr(module, 'quant'))
self.assertFalse(hasattr(module, 'dequant'))
def checkNoQconfig(self, module):
r"""Checks the module does not contain qconfig
"""
self.assertFalse(hasattr(module, 'qconfig'))
for child in module.children():
self.checkNoQconfig(child)
def checkHasPrepModules(self, module):
r"""Checks the module contains child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertTrue(hasattr(module, 'module'))
self.assertTrue(hasattr(module, 'quant'))
self.assertTrue(hasattr(module, 'dequant'))
def checkObservers(self, module, propagate_qconfig_list=None, prepare_custom_config_dict=None):
r"""Checks the module or module's leaf descendants
have observers in preperation for quantization
"""
Loading ...