Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torch   python

Repository URL to install this package:

Version: 1.8.0 

/ testing / _internal / distributed / rpc / dist_autograd_test.py

import sys
import threading
import time
import unittest
from enum import Enum
import torch
from datetime import timedelta
import torch.distributed as dist
import torch.distributed.autograd as dist_autograd
import torch.distributed.rpc as rpc
import torch.testing._internal.dist_utils
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.distributed.rpc import RRef
from torch.testing._internal.common_utils import IS_MACOS
from torch.testing._internal.dist_utils import (
    dist_init,
    initialize_pg,
    wait_until_node_failure,
    worker_name,
)
from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import (
    RpcAgentTestFixture,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu


# Right now we test up to 3-layer nested rpc calls.
# rpc_done[1] and ctx_ids[1] represent rpc is done in prev rank, and context id
# sent from prev rank respectively.
# rpc_done[2] and ctx_ids[2] represents for prev of prev rank.
# rpc_done[3] and ctx_ids[3] represents for prev of prev of prev rank.
# rpc_done[0] and ctx_ids[0] represents for current rank, but mostly not used.
rpc_done = [False, False, False, False]
ctx_ids = [-1, -1, -1, -1]

known_context_ids = set()

requires_grad_tensor = torch.ones(3, 3, requires_grad=True)

# Send rpc done info and context_id to
# dst_rank = (self.rank + rank_distance) % self.world_size
# we don't need a lock here since the GIL is held while executing remote
# python UDFs, so access is serialized across several workers.
def _set_rpc_done(ctx_id, rank_distance):
    global rpc_done
    global ctx_ids
    global known_context_ids
    rpc_done[rank_distance] = True
    ctx_ids[rank_distance] = ctx_id
    known_context_ids.add(ctx_id)


def _check_rpc_done(rank_distance):
    while not rpc_done[rank_distance]:
        time.sleep(0.1)


def _torch_ones(sizes, requires_grad=False):
    return torch.ones(sizes, requires_grad=requires_grad)

# This method must be called on the rref owner, and verifies that the grad of
# rref tensor equals to the given grad.
def _compare_owner_value(context_id, rref, grad):
    grads = dist_autograd.get_gradients(context_id)
    return torch.equal(grads[rref.local_value()], grad)


def create_tensor():
    return torch.ones((3, 3), requires_grad=True)


@torch.jit.script
def create_torchscript_tensor() -> torch.Tensor:
    return torch.ones((3, 3)).requires_grad_()


def my_py_add(t1, t2):
    return torch.add(t1, t2)


def my_scalar_add(a, b):
    return a + b


def my_rref_add(rref_t1, t2):
    ret = torch.add(rref_t1.local_value(), t2)
    return ret


@torch.jit.script
def my_script_add(t1, t2):
    return torch.add(t1, t2)


@torch.jit.script
def my_script_ref_add(ref_t1: RRef[torch.Tensor], t2: torch.Tensor) -> torch.Tensor:
    t1 = ref_t1.to_here()
    return torch.add(t1, t2)


def my_nested_rref_add(dst, rref_t1, t2):
    return rpc.rpc_sync(dst, my_rref_add, args=(rref_t1, t2))


def ret_requires_grad():
    return requires_grad_tensor


def my_py_nested_call(t1, t2, dst, world_size, hops):
    next_dst = (dst + 1) % world_size
    if hops > 0:
        return rpc.rpc_sync(
            worker_name(next_dst),
            my_py_nested_call,
            args=(t1, t2, next_dst, world_size, hops - 1),
        )
    else:
        return rpc.rpc_sync(worker_name(next_dst), my_py_add, args=(t1, t2))


# after dist autograd context is cleaned up, it should be cleaned up on other
# nodes. This helper allows timeout_seconds for those RPCs to be completed, and
# ensures that all the contexts have been cleaned up in that timeframe.any
def _all_contexts_cleaned_up(timeout_seconds=10):
    global known_context_ids
    start = time.time()
    context_id_to_raised = set()
    while (
        time.time() - start < timeout_seconds
        and context_id_to_raised != known_context_ids
    ):
        for context_id in known_context_ids:
            try:
                dist_autograd._retrieve_context(context_id)
            except RuntimeError:
                context_id_to_raised.add(context_id)
    # all contexts have been cleaned up if trying to retrieve any context resulted in a RuntimeError.
    success = context_id_to_raised == known_context_ids
    return success


# This function creates a dis atugorad context, run rpc_sync on the given ps,
# and then blocks until the ps has verified the grads are correctly accumulated.
def _run_trainer(rref_t1, t2, ps, rank_diff):
    with dist_autograd.context() as context_id:
        ret = rpc.rpc_sync(ps, my_rref_add, args=(rref_t1, t2))
        dist_autograd.backward(context_id, [ret.sum()])
        # prevent deleting dist autograd context
        rpc.rpc_sync(ps, _set_rpc_done, args=(context_id, rank_diff))
        rpc.rpc_sync(ps, _check_rpc_done, args=(0,))

# This function is the same as _run_trainer, except rpc calls torchscript
# function "my_script_ref_add" instead of python funciton "my_rref_add"
def _run_trainer_torchscript(rref_t1, t2, ps, rank_diff):
    with dist_autograd.context() as context_id:
        ret = rpc.rpc_sync(ps, my_script_ref_add, args=(rref_t1, t2))
        dist_autograd.backward(context_id, [ret.sum()])
        # prevent deleting dist autograd context
        rpc.rpc_sync(ps, _set_rpc_done, args=(context_id, rank_diff))
        rpc.rpc_sync(ps, _check_rpc_done, args=(0,))


class SimulateBackwardError(Function):
    _simulate_error = True

    @staticmethod
    def forward(ctx, input):
        return input

    @staticmethod
    @once_differentiable
    def backward(ctx, input):
        if SimulateBackwardError._simulate_error:
            raise Exception("Simulate error on backward pass")
        else:
            return input


class ExecMode(Enum):
    LOCAL = 1  # Run the operation locally.
    RPC_SYNC = 2  # Run the operation using rpc_sync
    REMOTE = 3  # Run the operation using remote.
    RPC_ASYNC = 4  # Run the operation using rpc_async


class DistAutogradTest(RpcAgentTestFixture):
    def _exec_func_with_dst(self, dst, exec_mode, method, *args):
        if ExecMode.LOCAL == exec_mode:
            if len(args) == 1 and isinstance(args[0], list):
                return method(*args[0])
            return method(*args)
        elif ExecMode.RPC_SYNC == exec_mode:
            return rpc.rpc_sync(worker_name(dst), method, args=(args))
        elif ExecMode.REMOTE == exec_mode:
            return rpc.remote(worker_name(dst), method, args=(args)).to_here()
        elif ExecMode.RPC_ASYNC == exec_mode:
            fut = rpc.rpc_async(worker_name(dst), method, args=(args))
            return fut.wait()
        else:
            raise ValueError("Unrecognized ExecMode {}".format(exec_mode))

    def _exec_func(self, exec_mode, method, *args):
        return self._exec_func_with_dst(
            self._next_rank(), exec_mode, method, *args
        )

    def _next_rank(self):
        if hasattr(self, "dst_rank"):
            self.dst_rank = (self.dst_rank + 1) % self.world_size
            if self.dst_rank == self.rank:
                return self._next_rank()
        else:
            self.dst_rank = (self.rank + 1) % self.world_size
        return self.dst_rank

    def _check_rpc_done(self, rank_distance):
        _check_rpc_done(rank_distance)

    @dist_init
    def test_autograd_context(self):
        # Verify max possible id.
        max_auto_increment = 281474976710655
        self.assertEqual(
            max_auto_increment + (self.worker_id << 48), dist_autograd._get_max_id()
        )

        context_ids = []
        for i in range(200):
            with dist_autograd.context() as context_id:
                self.assertEqual(
                    context_id,
                    dist_autograd._retrieve_context(context_id)._context_id(),
                )
                # First 16 bits should be worker_id.
                self.assertEqual(self.worker_id, context_id >> 48)
                context_ids.append(context_id)

        for context_id in context_ids:
            with self.assertRaisesRegex(
                RuntimeError,
                "Could not find autograd context with id: {}".format(context_id),
            ):
                dist_autograd._retrieve_context(context_id)

    @dist_init
    def test_nested_context(self):
        with dist_autograd.context() as context_id:
            # Nested contexts not supported.
            with self.assertRaisesRegex(
                RuntimeError, "Already have an autograd context id for this thread"
            ):
                with dist_autograd.context() as context_id:
                    pass

    # For current context, this rank sends t1 and t2 tensors to dst_rank,
    # then get t3 = torch.add(t1, t2) result tensor.
    # For the current context in this rank, it expects graph like this:
    #  send function:
    #              rpcSendBackward
    #                  /          \
    #  t1.AccumulateGrad         t2.AccumulateGrad
    #
    #  recv function:
    #
    #            |
    #          t3.rpcRecvBackward
    #
    def _verify_graph_for_first_rpc_call(
        self, send_function, recv_function, t1, t2, ret
    ):
        # Retrieve the next functions in the graph.
        next_funcs = send_function.next_functions
        self.assertEqual(2, len(next_funcs))

        # We should now hit t1 and t2 in the autograd graph.
        self.assertEqual("torch::autograd::AccumulateGrad", next_funcs[0][0].name())
        self.assertEqual(t1, next_funcs[0][0].variable)
        self.assertEqual(0, next_funcs[0][1])
        self.assertEqual("torch::autograd::AccumulateGrad", next_funcs[1][0].name())
        self.assertEqual(t2, next_funcs[1][0].variable)
        self.assertEqual(0, next_funcs[1][1])

        # Test recv functions.
        self.assertEqual(ret.grad_fn, recv_function)

    # For a context passed from previous nested chain calls, this rank
    # receives two tensors t1 and t2, executes torch.add(t1, t2) and sends
    # result tensor t3 back.
    # For this context in this rank, it expects graph like this:
    #  send and recv functions:
    #       rpcSendBackward
    #           |
    #          t3.AddBackward0
    #          /             \
    # t1.recvRpcBackward    t2.recvRpcBackward
    def _verify_graph_for_rpc_call_exec(self, send_function):
        # Verify next function is AddBackward0
        next_funcs = send_function.next_functions
        self.assertEqual(1, len(next_funcs))
        add_backward_fn = next_funcs[0][0]
        self.assertEqual("AddBackward0", add_backward_fn.name())

        # Verify the next two functions are the same recv backward function.
        next_funcs = add_backward_fn.next_functions
        self.assertEqual(2, len(next_funcs))
        self.assertEqual(
            "torch::distributed::autograd::RecvRpcBackward", next_funcs[0][0].name()
        )
        self.assertEqual(
            "torch::distributed::autograd::RecvRpcBackward", next_funcs[1][0].name()
        )
        self.assertEqual(next_funcs[0][0], next_funcs[1][0])

    # For a context passed from previous nested chain calls, this rank
    # receives two tensors t1 and t2, forwards t1 and t2 tensors using
    # nested rpc call to next dst. In return route, receive result tensor t3
    # from next dst and forwarding t3 back to previous calls.
    # For this context in this rank, it expects graph like this:
    #  send and recv functions for receiving and forwarding t1 and t2:
    #       rpcSendBackward
    #          /          \
    # t1.recvRpcBackward    t2.recvRpcBackward
    #  send and recv functions for receiving and forwarding t3:
    #       rpcSendBackward
    #             |
    #           t3.recvRpcBackward
    def _verify_graph_for_nested_rpc_call(self, ctx):
        send_functions = ctx._send_functions()
        self.assertEqual(2, len(send_functions))

        # For send function when making nest rpc call,
        # next functions of the send function are two recv functions
        # for received two tensors from previous call
        next_funcs = list(send_functions.values())[0].next_functions
        self.assertEqual(2, len(next_funcs))
        self.assertEqual(
            "torch::distributed::autograd::RecvRpcBackward", next_funcs[0][0].name()
        )
        self.assertEqual(
            "torch::distributed::autograd::RecvRpcBackward", next_funcs[1][0].name()
        )
        self.assertEqual(next_funcs[0][0], next_funcs[1][0])

        # For send function when returning resonpose to previous call
Loading ...