from collections import defaultdict
from collections.abc import Iterable
import numpy as np
import torch
import hypothesis
from functools import reduce
from hypothesis import assume
from hypothesis import settings
from hypothesis import strategies as st
from hypothesis.extra import numpy as stnp
from hypothesis.strategies import SearchStrategy
from torch.testing._internal.common_quantized import _calculate_dynamic_qparams, _calculate_dynamic_per_channel_qparams
# Setup for the hypothesis tests.
# The tuples are (torch_quantized_dtype, zero_point_enforce), where the last
# element is enforced zero_point. If None, any zero_point point within the
# range of the data type is OK.
# Tuple with all quantized data types.
_ALL_QINT_TYPES = (
torch.quint8,
torch.qint8,
torch.qint32,
)
# Enforced zero point for every quantized data type.
# If None, any zero_point point within the range of the data type is OK.
_ENFORCED_ZERO_POINT = defaultdict(lambda: None, {
torch.quint8: None,
torch.qint8: None,
torch.qint32: 0
})
def _get_valid_min_max(qparams):
scale, zero_point, quantized_type = qparams
adjustment = 1 + torch.finfo(torch.float).eps
_long_type_info = torch.iinfo(torch.long)
long_min, long_max = _long_type_info.min / adjustment, _long_type_info.max / adjustment
# make sure intermediate results are within the range of long
min_value = max((long_min - zero_point) * scale, (long_min / scale + zero_point))
max_value = min((long_max - zero_point) * scale, (long_max / scale + zero_point))
return np.float32(min_value), np.float32(max_value)
# This wrapper wraps around `st.floats` and checks the version of `hypothesis`, if
# it is too old, removes the `width` parameter (which was introduced)
# in 3.67.0
def _floats_wrapper(*args, **kwargs):
if 'width' in kwargs and hypothesis.version.__version_info__ < (3, 67, 0):
# As long as nan, inf, min, max are not specified, reimplement the width
# parameter for older versions of hypothesis.
no_nan_and_inf = (
(('allow_nan' in kwargs and not kwargs['allow_nan']) or
'allow_nan' not in kwargs) and
(('allow_infinity' in kwargs and not kwargs['allow_infinity']) or
'allow_infinity' not in kwargs))
min_and_max_not_specified = (
len(args) == 0 and
'min_value' not in kwargs and
'max_value' not in kwargs
)
if no_nan_and_inf and min_and_max_not_specified:
if kwargs['width'] == 16:
kwargs['min_value'] = torch.finfo(torch.float16).min
kwargs['max_value'] = torch.finfo(torch.float16).max
elif kwargs['width'] == 32:
kwargs['min_value'] = torch.finfo(torch.float32).min
kwargs['max_value'] = torch.finfo(torch.float32).max
elif kwargs['width'] == 64:
kwargs['min_value'] = torch.finfo(torch.float64).min
kwargs['max_value'] = torch.finfo(torch.float64).max
kwargs.pop('width')
return st.floats(*args, **kwargs)
def floats(*args, **kwargs):
if 'width' not in kwargs:
kwargs['width'] = 32
return _floats_wrapper(*args, **kwargs)
"""Hypothesis filter to avoid overflows with quantized tensors.
Args:
tensor: Tensor of floats to filter
qparams: Quantization parameters as returned by the `qparams`.
Returns:
True
Raises:
hypothesis.UnsatisfiedAssumption
Note: This filter is slow. Use it only when filtering of the test cases is
absolutely necessary!
"""
def assume_not_overflowing(tensor, qparams):
min_value, max_value = _get_valid_min_max(qparams)
assume(tensor.min() >= min_value)
assume(tensor.max() <= max_value)
return True
"""Strategy for generating the quantization parameters.
Args:
dtypes: quantized data types to sample from.
scale_min / scale_max: Min and max scales. If None, set to 1e-3 / 1e3.
zero_point_min / zero_point_max: Min and max for the zero point. If None,
set to the minimum and maximum of the quantized data type.
Note: The min and max are only valid if the zero_point is not enforced
by the data type itself.
Generates:
scale: Sampled scale.
zero_point: Sampled zero point.
quantized_type: Sampled quantized type.
"""
@st.composite
def qparams(draw, dtypes=None, scale_min=None, scale_max=None,
zero_point_min=None, zero_point_max=None):
if dtypes is None:
dtypes = _ALL_QINT_TYPES
if not isinstance(dtypes, (list, tuple)):
dtypes = (dtypes,)
quantized_type = draw(st.sampled_from(dtypes))
_type_info = torch.iinfo(quantized_type)
qmin, qmax = _type_info.min, _type_info.max
# TODO: Maybe embed the enforced zero_point in the `torch.iinfo`.
_zp_enforced = _ENFORCED_ZERO_POINT[quantized_type]
if _zp_enforced is not None:
zero_point = _zp_enforced
else:
_zp_min = qmin if zero_point_min is None else zero_point_min
_zp_max = qmax if zero_point_max is None else zero_point_max
zero_point = draw(st.integers(min_value=_zp_min, max_value=_zp_max))
if scale_min is None:
scale_min = torch.finfo(torch.float).eps
if scale_max is None:
scale_max = torch.finfo(torch.float).max
scale = draw(floats(min_value=scale_min, max_value=scale_max, width=32))
return scale, zero_point, quantized_type
"""Strategy to create different shapes.
Args:
min_dims / max_dims: minimum and maximum rank.
min_side / max_side: minimum and maximum dimensions per rank.
Generates:
Possible shapes for a tensor, constrained to the rank and dimensionality.
Example:
# Generates 3D and 4D tensors.
@given(Q = qtensor(shapes=array_shapes(min_dims=3, max_dims=4))
some_test(self, Q):...
"""
@st.composite
def array_shapes(draw, min_dims=1, max_dims=None, min_side=1, max_side=None, max_numel=None):
"""Return a strategy for array shapes (tuples of int >= 1)."""
assert(min_dims < 32)
if max_dims is None:
max_dims = min(min_dims + 2, 32)
assert(max_dims < 32)
if max_side is None:
max_side = min_side + 5
candidate = st.lists(st.integers(min_side, max_side), min_size=min_dims, max_size=max_dims)
if max_numel is not None:
candidate = candidate.filter(lambda x: reduce(int.__mul__, x, 1) <= max_numel)
return draw(candidate.map(tuple))
"""Strategy for generating test cases for tensors.
The resulting tensor is in float32 format.
Args:
shapes: Shapes under test for the tensor. Could be either a hypothesis
strategy, or an iterable of different shapes to sample from.
elements: Elements to generate from for the returned data type.
If None, the strategy resolves to float within range [-1e6, 1e6].
qparams: Instance of the qparams strategy. This is used to filter the tensor
such that the overflow would not happen.
Generates:
X: Tensor of type float32. Note that NaN and +/-inf is not included.
qparams: (If `qparams` arg is set) Quantization parameters for X.
The returned parameters are `(scale, zero_point, quantization_type)`.
(If `qparams` arg is None), returns None.
"""
@st.composite
def tensor(draw, shapes=None, elements=None, qparams=None):
if isinstance(shapes, SearchStrategy):
_shape = draw(shapes)
else:
_shape = draw(st.sampled_from(shapes))
if qparams is None:
if elements is None:
elements = floats(-1e6, 1e6, allow_nan=False, width=32)
X = draw(stnp.arrays(dtype=np.float32, elements=elements, shape=_shape))
assume(not (np.isnan(X).any() or np.isinf(X).any()))
return X, None
qparams = draw(qparams)
if elements is None:
min_value, max_value = _get_valid_min_max(qparams)
elements = floats(min_value, max_value, allow_infinity=False,
allow_nan=False, width=32)
X = draw(stnp.arrays(dtype=np.float32, elements=elements, shape=_shape))
# Recompute the scale and zero_points according to the X statistics.
scale, zp = _calculate_dynamic_qparams(X, qparams[2])
enforced_zp = _ENFORCED_ZERO_POINT.get(qparams[2], None)
if enforced_zp is not None:
zp = enforced_zp
return X, (scale, zp, qparams[2])
@st.composite
def per_channel_tensor(draw, shapes=None, elements=None, qparams=None):
if isinstance(shapes, SearchStrategy):
_shape = draw(shapes)
else:
_shape = draw(st.sampled_from(shapes))
if qparams is None:
if elements is None:
elements = floats(-1e6, 1e6, allow_nan=False, width=32)
X = draw(stnp.arrays(dtype=np.float32, elements=elements, shape=_shape))
assume(not (np.isnan(X).any() or np.isinf(X).any()))
return X, None
qparams = draw(qparams)
if elements is None:
min_value, max_value = _get_valid_min_max(qparams)
elements = floats(min_value, max_value, allow_infinity=False,
allow_nan=False, width=32)
X = draw(stnp.arrays(dtype=np.float32, elements=elements, shape=_shape))
# Recompute the scale and zero_points according to the X statistics.
scale, zp = _calculate_dynamic_per_channel_qparams(X, qparams[2])
enforced_zp = _ENFORCED_ZERO_POINT.get(qparams[2], None)
if enforced_zp is not None:
zp = enforced_zp
# Permute to model quantization along an axis
axis = int(np.random.randint(0, X.ndim, 1))
permute_axes = np.arange(X.ndim)
permute_axes[0] = axis
permute_axes[axis] = 0
X = np.transpose(X, permute_axes)
return X, (scale, zp, axis, qparams[2])
"""Strategy for generating test cases for tensors used in Conv.
The resulting tensors is in float32 format.
Args:
spatial_dim: Spatial Dim for feature maps. If given as an iterable, randomly
picks one from the pool to make it the spatial dimension
batch_size_range: Range to generate `batch_size`.
Must be tuple of `(min, max)`.
input_channels_per_group_range:
Range to generate `input_channels_per_group`.
Must be tuple of `(min, max)`.
output_channels_per_group_range:
Range to generate `output_channels_per_group`.
Must be tuple of `(min, max)`.
feature_map_range: Range to generate feature map size for each spatial_dim.
Must be tuple of `(min, max)`.
kernel_range: Range to generate kernel size for each spatial_dim. Must be
tuple of `(min, max)`.
max_groups: Maximum number of groups to generate.
elements: Elements to generate from for the returned data type.
If None, the strategy resolves to float within range [-1e6, 1e6].
qparams: Strategy for quantization parameters. for X, w, and b.
Could be either a single strategy (used for all) or a list of
three strategies for X, w, b.
Generates:
(X, W, b, g): Tensors of type `float32` of the following drawen shapes:
X: (`batch_size, input_channels, H, W`)
W: (`output_channels, input_channels_per_group) + kernel_shape
b: `(output_channels,)`
groups: Number of groups the input is divided into
Note: X, W, b are tuples of (Tensor, qparams), where qparams could be either
None or (scale, zero_point, quantized_type)
Example:
@given(tensor_conv(
spatial_dim=2,
batch_size_range=(1, 3),
input_channels_per_group_range=(1, 7),
output_channels_per_group_range=(1, 7),
feature_map_range=(6, 12),
kernel_range=(3, 5),
max_groups=4,
elements=st.floats(-1.0, 1.0),
qparams=qparams()
))
"""
@st.composite
def tensor_conv(
draw, spatial_dim=2, batch_size_range=(1, 4),
input_channels_per_group_range=(3, 7),
output_channels_per_group_range=(3, 7), feature_map_range=(6, 12),
kernel_range=(3, 7), max_groups=1, can_be_transposed=False,
elements=None, qparams=None
):
# Resolve the minibatch, in_channels, out_channels, iH/iW, iK/iW
batch_size = draw(st.integers(*batch_size_range))
input_channels_per_group = draw(
st.integers(*input_channels_per_group_range))
output_channels_per_group = draw(
st.integers(*output_channels_per_group_range))
groups = draw(st.integers(1, max_groups))
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
if isinstance(spatial_dim, Iterable):
spatial_dim = draw(st.sampled_from(spatial_dim))
feature_map_shape = []
for i in range(spatial_dim):
feature_map_shape.append(draw(st.integers(*feature_map_range)))
kernels = []
for i in range(spatial_dim):
kernels.append(draw(st.integers(*kernel_range)))
tr = False
weight_shape = (output_channels, input_channels_per_group) + tuple(kernels)
bias_shape = output_channels
if can_be_transposed:
tr = draw(st.booleans())
if tr:
weight_shape = (input_channels, output_channels_per_group) + tuple(kernels)
bias_shape = output_channels
# Resolve the tensors
if qparams is not None:
if isinstance(qparams, (list, tuple)):
assert(len(qparams) == 3), "Need 3 qparams for X, w, b"
else:
qparams = [qparams] * 3
X = draw(tensor(shapes=(
(batch_size, input_channels) + tuple(feature_map_shape),),
elements=elements, qparams=qparams[0]))
W = draw(tensor(shapes=(weight_shape,), elements=elements,
qparams=qparams[1]))
Loading ...