# This script outputs relevant system environment info
# Run it with `python collect_env.py`.
import locale
import re
import subprocess
import sys
import os
from collections import namedtuple
try:
import torch
TORCH_AVAILABLE = True
except (ImportError, NameError, AttributeError, OSError):
TORCH_AVAILABLE = False
# System Environment Information
SystemEnv = namedtuple('SystemEnv', [
'torch_version',
'is_debug_build',
'cuda_compiled_version',
'gcc_version',
'clang_version',
'cmake_version',
'os',
'python_version',
'is_cuda_available',
'cuda_runtime_version',
'nvidia_driver_version',
'nvidia_gpu_models',
'cudnn_version',
'pip_version', # 'pip' or 'pip3'
'pip_packages',
'conda_packages',
'hip_compiled_version',
'hip_runtime_version',
'miopen_runtime_version',
])
def run(command):
"""Returns (return-code, stdout, stderr)"""
p = subprocess.Popen(command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, shell=True)
raw_output, raw_err = p.communicate()
rc = p.returncode
if get_platform() == 'win32':
enc = 'oem'
else:
enc = locale.getpreferredencoding()
output = raw_output.decode(enc)
err = raw_err.decode(enc)
return rc, output.strip(), err.strip()
def run_and_read_all(run_lambda, command):
"""Runs command using run_lambda; reads and returns entire output if rc is 0"""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out
def run_and_parse_first_match(run_lambda, command, regex):
"""Runs command using run_lambda, returns the first regex match if it exists"""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
match = re.search(regex, out)
if match is None:
return None
return match.group(1)
def get_conda_packages(run_lambda):
if get_platform() == 'win32':
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
grep_cmd = r'{} /R "torch numpy cudatoolkit soumith mkl magma"'.format(findstr_cmd)
else:
grep_cmd = r'grep "torch\|numpy\|cudatoolkit\|soumith\|mkl\|magma"'
conda = os.environ.get('CONDA_EXE', 'conda')
out = run_and_read_all(run_lambda, conda + ' list | ' + grep_cmd)
if out is None:
return out
# Comment starting at beginning of line
comment_regex = re.compile(r'^#.*\n')
return re.sub(comment_regex, '', out)
def get_gcc_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)')
def get_clang_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'clang --version', r'clang version (.*)')
def get_cmake_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'cmake --version', r'cmake (.*)')
def get_nvidia_driver_version(run_lambda):
if get_platform() == 'darwin':
cmd = 'kextstat | grep -i cuda'
return run_and_parse_first_match(run_lambda, cmd,
r'com[.]nvidia[.]CUDA [(](.*?)[)]')
smi = get_nvidia_smi()
return run_and_parse_first_match(run_lambda, smi, r'Driver Version: (.*?) ')
def get_gpu_info(run_lambda):
if get_platform() == 'darwin' or (TORCH_AVAILABLE and hasattr(torch.version, 'hip') and torch.version.hip is not None):
if TORCH_AVAILABLE and torch.cuda.is_available():
return torch.cuda.get_device_name(None)
return None
smi = get_nvidia_smi()
uuid_regex = re.compile(r' \(UUID: .+?\)')
rc, out, _ = run_lambda(smi + ' -L')
if rc != 0:
return None
# Anonymize GPUs by removing their UUID
return re.sub(uuid_regex, '', out)
def get_running_cuda_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'nvcc --version', r'V(.*)$')
def get_cudnn_version(run_lambda):
"""This will return a list of libcudnn.so; it's hard to tell which one is being used"""
if get_platform() == 'win32':
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
cuda_path = os.environ.get('CUDA_PATH', "%CUDA_PATH%")
where_cmd = os.path.join(system_root, 'System32', 'where')
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
elif get_platform() == 'darwin':
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
cudnn_cmd = 'ls /usr/local/cuda/lib/libcudnn*'
else:
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
rc, out, _ = run_lambda(cudnn_cmd)
# find will return 1 if there are permission errors or if not found
if len(out) == 0 or (rc != 1 and rc != 0):
l = os.environ.get('CUDNN_LIBRARY')
if l is not None and os.path.isfile(l):
return os.path.realpath(l)
return None
files_set = set()
for fn in out.split('\n'):
fn = os.path.realpath(fn) # eliminate symbolic links
if os.path.isfile(fn):
files_set.add(fn)
if not files_set:
return None
# Alphabetize the result because the order is non-deterministic otherwise
files = list(sorted(files_set))
if len(files) == 1:
return files[0]
result = '\n'.join(files)
return 'Probably one of the following:\n{}'.format(result)
def get_nvidia_smi():
# Note: nvidia-smi is currently available only on Windows and Linux
smi = 'nvidia-smi'
if get_platform() == 'win32':
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
program_files_root = os.environ.get('PROGRAMFILES', 'C:\\Program Files')
legacy_path = os.path.join(program_files_root, 'NVIDIA Corporation', 'NVSMI', smi)
new_path = os.path.join(system_root, 'System32', smi)
smis = [new_path, legacy_path]
for candidate_smi in smis:
if os.path.exists(candidate_smi):
smi = f'"{candidate_smi}"'
break
return smi
def get_platform():
if sys.platform.startswith('linux'):
return 'linux'
elif sys.platform.startswith('win32'):
return 'win32'
elif sys.platform.startswith('cygwin'):
return 'cygwin'
elif sys.platform.startswith('darwin'):
return 'darwin'
else:
return sys.platform
def get_mac_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion', r'(.*)')
def get_windows_version(run_lambda):
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
wmic_cmd = os.path.join(system_root, 'System32', 'Wbem', 'wmic')
findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
return run_and_read_all(run_lambda, '{} os get Caption | {} /v Caption'.format(wmic_cmd, findstr_cmd))
def get_lsb_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'lsb_release -a', r'Description:\t(.*)')
def check_release_file(run_lambda):
return run_and_parse_first_match(run_lambda, 'cat /etc/*-release',
r'PRETTY_NAME="(.*)"')
def get_os(run_lambda):
from platform import machine
platform = get_platform()
if platform == 'win32' or platform == 'cygwin':
return get_windows_version(run_lambda)
if platform == 'darwin':
version = get_mac_version(run_lambda)
if version is None:
return None
return 'macOS {} ({})'.format(version, machine())
if platform == 'linux':
# Ubuntu/Debian based
desc = get_lsb_version(run_lambda)
if desc is not None:
return '{} ({})'.format(desc, machine())
# Try reading /etc/*-release
desc = check_release_file(run_lambda)
if desc is not None:
return '{} ({})'.format(desc, machine())
return '{} ({})'.format(platform, machine())
# Unknown platform
return platform
def get_pip_packages(run_lambda):
"""Returns `pip list` output. Note: will also find conda-installed pytorch
and numpy packages."""
# People generally have `pip` as `pip` or `pip3`
def run_with_pip(pip):
if get_platform() == 'win32':
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
grep_cmd = r'{} /R "numpy torch"'.format(findstr_cmd)
else:
grep_cmd = r'grep "torch\|numpy"'
return run_and_read_all(run_lambda, pip + ' list --format=freeze | ' + grep_cmd)
# Try to figure out if the user is running pip or pip3.
out2 = run_with_pip('pip')
out3 = run_with_pip('pip3')
num_pips = len([x for x in [out2, out3] if x is not None])
if num_pips == 0:
return 'pip', out2
if num_pips == 1:
if out2 is not None:
return 'pip', out2
return 'pip3', out3
# num_pips is 2. Return pip3 by default b/c that most likely
# is the one associated with Python 3
return 'pip3', out3
def get_env_info():
run_lambda = run
pip_version, pip_list_output = get_pip_packages(run_lambda)
if TORCH_AVAILABLE:
version_str = torch.__version__
debug_mode_str = str(torch.version.debug)
cuda_available_str = str(torch.cuda.is_available())
cuda_version_str = torch.version.cuda
if not hasattr(torch.version, 'hip') or torch.version.hip is None: # cuda version
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
else: # HIP version
cfg = torch._C._show_config().split('\n')
hip_runtime_version = [s.rsplit(None, 1)[-1] for s in cfg if 'HIP Runtime' in s][0]
miopen_runtime_version = [s.rsplit(None, 1)[-1] for s in cfg if 'MIOpen' in s][0]
cuda_version_str = 'N/A'
hip_compiled_version = torch.version.hip
else:
version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A'
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
return SystemEnv(
torch_version=version_str,
is_debug_build=debug_mode_str,
python_version='{}.{} ({}-bit runtime)'.format(sys.version_info[0], sys.version_info[1], sys.maxsize.bit_length() + 1),
is_cuda_available=cuda_available_str,
cuda_compiled_version=cuda_version_str,
cuda_runtime_version=get_running_cuda_version(run_lambda),
nvidia_gpu_models=get_gpu_info(run_lambda),
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
cudnn_version=get_cudnn_version(run_lambda),
hip_compiled_version=hip_compiled_version,
hip_runtime_version=hip_runtime_version,
miopen_runtime_version=miopen_runtime_version,
pip_version=pip_version,
pip_packages=pip_list_output,
conda_packages=get_conda_packages(run_lambda),
os=get_os(run_lambda),
gcc_version=get_gcc_version(run_lambda),
clang_version=get_clang_version(run_lambda),
cmake_version=get_cmake_version(run_lambda),
)
env_info_fmt = """
PyTorch version: {torch_version}
Is debug build: {is_debug_build}
CUDA used to build PyTorch: {cuda_compiled_version}
ROCM used to build PyTorch: {hip_compiled_version}
OS: {os}
GCC version: {gcc_version}
Clang version: {clang_version}
CMake version: {cmake_version}
Python version: {python_version}
Is CUDA available: {is_cuda_available}
CUDA runtime version: {cuda_runtime_version}
GPU models and configuration: {nvidia_gpu_models}
Nvidia driver version: {nvidia_driver_version}
cuDNN version: {cudnn_version}
HIP runtime version: {hip_runtime_version}
MIOpen runtime version: {miopen_runtime_version}
Versions of relevant libraries:
{pip_packages}
{conda_packages}
""".strip()
def pretty_str(envinfo):
def replace_nones(dct, replacement='Could not collect'):
Loading ...