Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torchvision   python

Repository URL to install this package:

Version: 0.9.0+cu111 

/ datasets / phototour.py

import os
import numpy as np
from PIL import Image
from typing import Any, Callable, List, Optional, Tuple, Union

import torch
from .vision import VisionDataset

from .utils import download_url


class PhotoTour(VisionDataset):
    """`Learning Local Image Descriptors Data <http://phototour.cs.washington.edu/patches/default.htm>`_ Dataset.


    Args:
        root (string): Root directory where images are.
        name (string): Name of the dataset to load.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
    urls = {
        'notredame_harris': [
            'http://matthewalunbrown.com/patchdata/notredame_harris.zip',
            'notredame_harris.zip',
            '69f8c90f78e171349abdf0307afefe4d'
        ],
        'yosemite_harris': [
            'http://matthewalunbrown.com/patchdata/yosemite_harris.zip',
            'yosemite_harris.zip',
            'a73253d1c6fbd3ba2613c45065c00d46'
        ],
        'liberty_harris': [
            'http://matthewalunbrown.com/patchdata/liberty_harris.zip',
            'liberty_harris.zip',
            'c731fcfb3abb4091110d0ae8c7ba182c'
        ],
        'notredame': [
            'http://icvl.ee.ic.ac.uk/vbalnt/notredame.zip',
            'notredame.zip',
            '509eda8535847b8c0a90bbb210c83484'
        ],
        'yosemite': [
            'http://icvl.ee.ic.ac.uk/vbalnt/yosemite.zip',
            'yosemite.zip',
            '533b2e8eb7ede31be40abc317b2fd4f0'
        ],
        'liberty': [
            'http://icvl.ee.ic.ac.uk/vbalnt/liberty.zip',
            'liberty.zip',
            'fdd9152f138ea5ef2091746689176414'
        ],
    }
    means = {'notredame': 0.4854, 'yosemite': 0.4844, 'liberty': 0.4437,
             'notredame_harris': 0.4854, 'yosemite_harris': 0.4844, 'liberty_harris': 0.4437}
    stds = {'notredame': 0.1864, 'yosemite': 0.1818, 'liberty': 0.2019,
            'notredame_harris': 0.1864, 'yosemite_harris': 0.1818, 'liberty_harris': 0.2019}
    lens = {'notredame': 468159, 'yosemite': 633587, 'liberty': 450092,
            'liberty_harris': 379587, 'yosemite_harris': 450912, 'notredame_harris': 325295}
    image_ext = 'bmp'
    info_file = 'info.txt'
    matches_files = 'm50_100000_100000_0.txt'

    def __init__(
            self, root: str, name: str, train: bool = True, transform: Optional[Callable] = None, download: bool = False
    ) -> None:
        super(PhotoTour, self).__init__(root, transform=transform)
        self.name = name
        self.data_dir = os.path.join(self.root, name)
        self.data_down = os.path.join(self.root, '{}.zip'.format(name))
        self.data_file = os.path.join(self.root, '{}.pt'.format(name))

        self.train = train
        self.mean = self.means[name]
        self.std = self.stds[name]

        if download:
            self.download()

        if not self._check_datafile_exists():
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')

        # load the serialized data
        self.data, self.labels, self.matches = torch.load(self.data_file)

    def __getitem__(self, index: int) -> Union[torch.Tensor, Tuple[Any, Any, torch.Tensor]]:
        """
        Args:
            index (int): Index

        Returns:
            tuple: (data1, data2, matches)
        """
        if self.train:
            data = self.data[index]
            if self.transform is not None:
                data = self.transform(data)
            return data
        m = self.matches[index]
        data1, data2 = self.data[m[0]], self.data[m[1]]
        if self.transform is not None:
            data1 = self.transform(data1)
            data2 = self.transform(data2)
        return data1, data2, m[2]

    def __len__(self) -> int:
        if self.train:
            return self.lens[self.name]
        return len(self.matches)

    def _check_datafile_exists(self) -> bool:
        return os.path.exists(self.data_file)

    def _check_downloaded(self) -> bool:
        return os.path.exists(self.data_dir)

    def download(self) -> None:
        if self._check_datafile_exists():
            print('# Found cached data {}'.format(self.data_file))
            return

        if not self._check_downloaded():
            # download files
            url = self.urls[self.name][0]
            filename = self.urls[self.name][1]
            md5 = self.urls[self.name][2]
            fpath = os.path.join(self.root, filename)

            download_url(url, self.root, filename, md5)

            print('# Extracting data {}\n'.format(self.data_down))

            import zipfile
            with zipfile.ZipFile(fpath, 'r') as z:
                z.extractall(self.data_dir)

            os.unlink(fpath)

        # process and save as torch files
        print('# Caching data {}'.format(self.data_file))

        dataset = (
            read_image_file(self.data_dir, self.image_ext, self.lens[self.name]),
            read_info_file(self.data_dir, self.info_file),
            read_matches_files(self.data_dir, self.matches_files)
        )

        with open(self.data_file, 'wb') as f:
            torch.save(dataset, f)

    def extra_repr(self) -> str:
        return "Split: {}".format("Train" if self.train is True else "Test")


def read_image_file(data_dir: str, image_ext: str, n: int) -> torch.Tensor:
    """Return a Tensor containing the patches
    """

    def PIL2array(_img: Image.Image) -> np.ndarray:
        """Convert PIL image type to numpy 2D array
        """
        return np.array(_img.getdata(), dtype=np.uint8).reshape(64, 64)

    def find_files(_data_dir: str, _image_ext: str) -> List[str]:
        """Return a list with the file names of the images containing the patches
        """
        files = []
        # find those files with the specified extension
        for file_dir in os.listdir(_data_dir):
            if file_dir.endswith(_image_ext):
                files.append(os.path.join(_data_dir, file_dir))
        return sorted(files)  # sort files in ascend order to keep relations

    patches = []
    list_files = find_files(data_dir, image_ext)

    for fpath in list_files:
        img = Image.open(fpath)
        for y in range(0, 1024, 64):
            for x in range(0, 1024, 64):
                patch = img.crop((x, y, x + 64, y + 64))
                patches.append(PIL2array(patch))
    return torch.ByteTensor(np.array(patches[:n]))


def read_info_file(data_dir: str, info_file: str) -> torch.Tensor:
    """Return a Tensor containing the list of labels
       Read the file and keep only the ID of the 3D point.
    """
    with open(os.path.join(data_dir, info_file), 'r') as f:
        labels = [int(line.split()[0]) for line in f]
    return torch.LongTensor(labels)


def read_matches_files(data_dir: str, matches_file: str) -> torch.Tensor:
    """Return a Tensor containing the ground truth matches
       Read the file and keep only 3D point ID.
       Matches are represented with a 1, non matches with a 0.
    """
    matches = []
    with open(os.path.join(data_dir, matches_file), 'r') as f:
        for line in f:
            line_split = line.split()
            matches.append([int(line_split[0]), int(line_split[3]),
                            int(line_split[1] == line_split[4])])
    return torch.LongTensor(matches)