import os
import torch
import torch.utils.data as data
from typing import Any, Callable, List, Optional, Tuple
class VisionDataset(data.Dataset):
_repr_indent = 4
def __init__(
self,
root: str,
transforms: Optional[Callable] = None,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
) -> None:
if isinstance(root, torch._six.string_classes):
root = os.path.expanduser(root)
self.root = root
has_transforms = transforms is not None
has_separate_transform = transform is not None or target_transform is not None
if has_transforms and has_separate_transform:
raise ValueError("Only transforms or transform/target_transform can "
"be passed as argument")
# for backwards-compatibility
self.transform = transform
self.target_transform = target_transform
if has_separate_transform:
transforms = StandardTransform(transform, target_transform)
self.transforms = transforms
def __getitem__(self, index: int) -> Any:
raise NotImplementedError
def __len__(self) -> int:
raise NotImplementedError
def __repr__(self) -> str:
head = "Dataset " + self.__class__.__name__
body = ["Number of datapoints: {}".format(self.__len__())]
if self.root is not None:
body.append("Root location: {}".format(self.root))
body += self.extra_repr().splitlines()
if hasattr(self, "transforms") and self.transforms is not None:
body += [repr(self.transforms)]
lines = [head] + [" " * self._repr_indent + line for line in body]
return '\n'.join(lines)
def _format_transform_repr(self, transform: Callable, head: str) -> List[str]:
lines = transform.__repr__().splitlines()
return (["{}{}".format(head, lines[0])] +
["{}{}".format(" " * len(head), line) for line in lines[1:]])
def extra_repr(self) -> str:
return ""
class StandardTransform(object):
def __init__(self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None) -> None:
self.transform = transform
self.target_transform = target_transform
def __call__(self, input: Any, target: Any) -> Tuple[Any, Any]:
if self.transform is not None:
input = self.transform(input)
if self.target_transform is not None:
target = self.target_transform(target)
return input, target
def _format_transform_repr(self, transform: Callable, head: str) -> List[str]:
lines = transform.__repr__().splitlines()
return (["{}{}".format(head, lines[0])] +
["{}{}".format(" " * len(head), line) for line in lines[1:]])
def __repr__(self) -> str:
body = [self.__class__.__name__]
if self.transform is not None:
body += self._format_transform_repr(self.transform,
"Transform: ")
if self.target_transform is not None:
body += self._format_transform_repr(self.target_transform,
"Target transform: ")
return '\n'.join(body)