Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

neilisaac / torchvision   python

Repository URL to install this package:

Version: 0.9.0+cu111 

/ datasets / vision.py

import os
import torch
import torch.utils.data as data
from typing import Any, Callable, List, Optional, Tuple


class VisionDataset(data.Dataset):
    _repr_indent = 4

    def __init__(
            self,
            root: str,
            transforms: Optional[Callable] = None,
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
    ) -> None:
        if isinstance(root, torch._six.string_classes):
            root = os.path.expanduser(root)
        self.root = root

        has_transforms = transforms is not None
        has_separate_transform = transform is not None or target_transform is not None
        if has_transforms and has_separate_transform:
            raise ValueError("Only transforms or transform/target_transform can "
                             "be passed as argument")

        # for backwards-compatibility
        self.transform = transform
        self.target_transform = target_transform

        if has_separate_transform:
            transforms = StandardTransform(transform, target_transform)
        self.transforms = transforms

    def __getitem__(self, index: int) -> Any:
        raise NotImplementedError

    def __len__(self) -> int:
        raise NotImplementedError

    def __repr__(self) -> str:
        head = "Dataset " + self.__class__.__name__
        body = ["Number of datapoints: {}".format(self.__len__())]
        if self.root is not None:
            body.append("Root location: {}".format(self.root))
        body += self.extra_repr().splitlines()
        if hasattr(self, "transforms") and self.transforms is not None:
            body += [repr(self.transforms)]
        lines = [head] + [" " * self._repr_indent + line for line in body]
        return '\n'.join(lines)

    def _format_transform_repr(self, transform: Callable, head: str) -> List[str]:
        lines = transform.__repr__().splitlines()
        return (["{}{}".format(head, lines[0])] +
                ["{}{}".format(" " * len(head), line) for line in lines[1:]])

    def extra_repr(self) -> str:
        return ""


class StandardTransform(object):
    def __init__(self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None) -> None:
        self.transform = transform
        self.target_transform = target_transform

    def __call__(self, input: Any, target: Any) -> Tuple[Any, Any]:
        if self.transform is not None:
            input = self.transform(input)
        if self.target_transform is not None:
            target = self.target_transform(target)
        return input, target

    def _format_transform_repr(self, transform: Callable, head: str) -> List[str]:
        lines = transform.__repr__().splitlines()
        return (["{}{}".format(head, lines[0])] +
                ["{}{}".format(" " * len(head), line) for line in lines[1:]])

    def __repr__(self) -> str:
        body = [self.__class__.__name__]
        if self.transform is not None:
            body += self._format_transform_repr(self.transform,
                                                "Transform: ")
        if self.target_transform is not None:
            body += self._format_transform_repr(self.target_transform,
                                                "Target transform: ")

        return '\n'.join(body)