Repository URL to install this package:
Version:
4.8.0 ▾
|
chaco
/
color_spaces.py
|
---|
""" Conversion functions between various color spaces.
The implementations and data are mostly taken from the old
scipy.sandbox.image package.
The CIE XYZ tristimulus colorspace with a standard D65 whitepoint is the
default interchange color space for the implementations here. This is
a useful whitepoint for viewing on computer monitors. However, it should
be noted that the dimmer D50 whitepoint is often used in print
applications. Notably, ICC profiles use the XYZ space with a D50
whitepoint as one of its standard interchange color spaces.
"""
import numpy as np
from numpy.linalg import inv, solve
#### Utilities ################################################################
def convert(matrix, TTT, axis=-1):
""" Apply linear matrix transformation to an array of color triples.
Parameters
----------
matrix : float array (3, 3)
The transformation to apply.
TTT : float array
The set of colors to transform.
axis : int, optional
The axis of `TTT` along which the color triples extend.
Returns
-------
OUT : float array
The transformed colors.
"""
TTT = np.asarray(TTT)
if (axis != 0):
TTT = np.swapaxes(TTT, 0, axis)
oldshape = TTT.shape
TTT = np.reshape(TTT, (3, -1))
OUT = np.dot(matrix, TTT)
OUT.shape = oldshape
if (axis != 0):
OUT = np.swapaxes(OUT, axis, 0)
return OUT
def makeslices(n):
""" Return a list of `n` slice objects.
Each slice object corresponds to [:] without arguments.
"""
slices = [slice(None)] * n
return slices
def separate_colors(xyz, axis=-1):
""" Separate an array of color triples into three arrays, one for
each color axis.
Parameters
----------
xyz : float array
axis : int, optional
The axis along which the color triples extend.
Returns
-------
x : float array
y : float array
z : float array
The separate color arrays.
axis : int
The axis along which they need to be reassembled.
"""
n = len(xyz.shape)
if axis < 0:
axis = n + axis
slices = makeslices(n)
slices[axis] = 0
x = xyz[tuple(slices)]
slices[axis] = 1
y = xyz[tuple(slices)]
slices[axis] = 2
z = xyz[tuple(slices)]
return x, y, z, axis
def join_colors(c1, c2, c3, axis):
""" Rejoin the separated colors into a single array.
"""
c1 = np.asarray(c1)
c2 = np.asarray(c2)
c3 = np.asarray(c3)
newshape = c1.shape[:axis] + (1,) + c1.shape[axis:]
c1.shape = c2.shape = c3.shape = newshape
return np.concatenate((c1, c2, c3), axis=axis)
def triwhite(x, y):
""" Convert x,y chromaticity coordinates to XYZ tristimulus values.
"""
X = x / y
Y = 1.0
Z = (1-x-y)/y
return [X, Y, Z]
#### Data #####################################################################
# From the sRGB specification.
xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423],
[0.212671, 0.715160, 0.072169],
[0.019334, 0.119193, 0.950227]])
rgb_from_xyz = inv(xyz_from_rgb)
# XYZ white-point coordinates
# from http://en.wikipedia.org/wiki/Standard_illuminant
whitepoints = {
'CIE A': ['Normal incandescent', triwhite(0.44757, 0.40745)],
'CIE B': ['Direct sunlight', triwhite(0.34842, 0.35161)],
'CIE C': ['Average sunlight', triwhite(0.31006, 0.31616)],
'CIE E': ['Normalized reference', triwhite(1.0/3, 1.0/3)],
'D50': ['Bright tungsten', triwhite(0.34567, 0.35850)],
'D55': ['Cloudy daylight', triwhite(0.33242, 0.34743)],
'D65': ['Daylight', triwhite(0.31271, 0.32902)],
'D75': ['?', triwhite(0.29902, 0.31485)],
}
#### Conversion routines ######################################################
def xyz2lab(xyz, axis=-1, wp=whitepoints['D65'][-1]):
""" Convert XYZ tristimulus values to CIE L*a*b*.
Parameters
----------
xyz : float array
XYZ values.
axis : int, optional
The axis of the XYZ values.
wp : list of 3 floats, optional
The XYZ tristimulus values of the whitepoint.
Returns
-------
lab : float array
The L*a*b* colors.
"""
x, y, z, axis = separate_colors(xyz, axis)
xn, yn, zn = x/wp[0], y/wp[1], z/wp[2]
def f(t):
eps = 216/24389.
kap = 24389/27.
return np.where(t > eps,
np.power(t, 1.0/3),
(kap*t + 16.0)/116)
fx, fy, fz = f(xn), f(yn), f(zn)
L = 116*fy - 16
a = 500*(fx - fy)
b = 200*(fy - fz)
return join_colors(L, a, b, axis)
def lab2xyz(lab, axis=-1, wp=whitepoints['D65'][-1]):
""" Convert CIE L*a*b* colors to XYZ tristimulus values.
Parameters
----------
lab : float array
L*a*b* values.
axis : int, optional
The axis of the XYZ values.
wp : list of 3 floats, optional
The XYZ tristimulus values of the whitepoint.
Returns
-------
xyz : float array
The XYZ colors.
"""
lab = np.asarray(lab)
L, a, b, axis = separate_colors(lab, axis)
fy = (L+16)/116.0
fz = fy - b / 200.
fx = a/500.0 + fy
def finv(y):
eps3 = (216/24389.)**3
kap = 24389/27.
return np.where(y > eps3,
np.power(y, 3),
(116*y - 16)/kap)
xr, yr, zr = finv(fx), finv(fy), finv(fz)
return join_colors(xr*wp[0], yr*wp[1], zr*wp[2], axis)
# RGB values that will be displayed on a screen are always nonlinear
# R'G'B' values. To get the XYZ value of the color that will be
# displayed you need a calibrated monitor with a profile.
# But, for quick-and-dirty calculation you can often assume the standard
# sR'G'B' coordinate system for your computer, and so the rgbp2rgb will
# put you in the linear coordinate system (assuming normalized to [0,1]
# sR'G'B' coordinates)
#
# sRGB <-> sR'G'B' equations from
# http://www.w3.org/Graphics/Color/sRGB
# http://www.srgb.com/basicsofsrgb.htm
# Macintosh displays are usually gamma = 1.8
def rgb2rgbp(rgb, gamma=None):
""" Convert linear RGB coordinates to nonlinear R'G'B' coordinates.
Parameters
----------
rgb : float array
gamma : float, optional
If provided, then this value of gamma will be used to correct the
colors. If not provided, then the standard sR'G'B' space will be
assumed. It is almost, but not quite equivalent to a gamma of 2.2.
Returns
-------
rgbp : float array
"""
rgb = np.asarray(rgb)
if gamma is None:
eps = 0.0031308
mask = rgb < eps
rgbp = np.empty_like(rgb)
rgbp[mask] = 12.92 * rgb[mask]
rgbp[~mask] = 1.055*rgb[~mask]**(1.0/2.4) - 0.055
return rgbp
else:
return rgb**(1.0/gamma)
def rgbp2rgb(rgbp, gamma=None):
""" Convert nonlinear R'G'B' coordinates to linear RGB coordinates.
Parameters
----------
rgbp : float array
gamma : float, optional
If provided, then this value of gamma will be used to correct the
colors. If not provided, then the standard sR'G'B' space will be
assumed. It is almost, but not quite equivalent to a gamma of 2.2.
Returns
-------
rgb : float array
"""
rgbp = np.asarray(rgbp)
if gamma is None:
eps = 0.04045
mask = rgbp <= eps
rgb = np.empty_like(rgbp)
rgb[mask] = rgbp[mask] / 12.92
rgb[~mask] = ((rgbp[~mask] + 0.055) / 1.055) ** 2.4
return rgb
else:
return rgbp**gamma
def xyz2rgb(xyz, axis=-1):
""" Convert XYZ tristimulus values to linear RGB coordinates.
Parameters
----------
xyz : float array
XYZ values.
axis : int, optional
The axis of the XYZ values.
Returns
-------
rgb : float array
The RGB colors.
"""
return convert(rgb_from_xyz, xyz, axis)
def rgb2xyz(rgb, axis=-1):
""" Convert linear RGB coordinates to XYZ tristimulus values.
Parameters
----------
rgb : float array
RGB values.
axis : int, optional
The axis of the XYZ values.
Returns
-------
xyz : float array
The XYZ colors.
"""
return convert(xyz_from_rgb, rgb, axis)
def srgb2xyz(srgb, axis=-1):
""" Convert sR'G'B' colors to XYZ.
Parameters
----------
srgb : float array
sR'G'B' values.
axis : int, optional
The axis of the XYZ values.
Returns
-------
xyz : float array
The XYZ colors.
"""
return rgb2xyz(rgbp2rgb(srgb), axis=axis)
def xyz2srgb(xyz, axis=-1):
""" Convert XYZ colors to sR'G'B'.
Parameters
----------
xyz : float array
XYZ values.
axis : int, optional
The axis of the XYZ values.
Returns
-------
srgb : float array
The sR'G'B' colors.
"""
return rgb2rgbp(xyz2rgb(xyz, axis=axis))
def xyz2xyz(xyz):
""" Identity mapping.
"""
return xyz
def xyz2msh(xyz, axis=-1, wp=whitepoints['D65'][-1]):
""" Convert XYZ tristimulus values to Msh.
Msh is a hemispherical coordinate system derived from L*a*b*. The
origin remains the same. M is the distance from the origin. s is an
inclination angle from the vertical corresponding to saturation.
h is the azimuthal angle corresponding to hue.
Moreland, Kenneth. Diverging Color Maps for Scientific Visualization
(Expanded).
http://www.sandia.gov/~kmorel/documents/ColorMaps/ColorMapsExpanded.pdf
Parameters
----------
xyz : float array
XYZ values.
axis : int, optional
The axis of the XYZ values.
wp : list of 3 floats, optional
The XYZ tristimulus values of the whitepoint.
Returns
-------
msh : float array
The Msh colors.
"""
L, a, b, axis = separate_colors(xyz2lab(xyz, axis=axis, wp=wp), axis)
M = np.sqrt(L*L + a*a + b*b)
s = np.arccos(L / M)
h = np.arctan2(b, a)
return join_colors(M, s, h, axis)
def msh2xyz(msh, axis=-1, wp=whitepoints['D65'][-1]):
""" Convert Msh values to XYZ tristimulus values.
Parameters
----------
msh : float array
The Msh colors.
axis : int, optional
The axis of the XYZ values.
wp : list of 3 floats, optional
The XYZ tristimulus values of the whitepoint.
Returns
-------
xyz : float array
XYZ values.
"""
M, s, h, axis = separate_colors(msh, axis)
L = M * np.cos(s)
a = M * np.sin(s) * np.cos(h)
b = M * np.sin(s) * np.sin(h)
return lab2xyz(join_colors(L, a, b, axis), axis=axis, wp=wp)