Repository URL to install this package:
Version:
5.0.0 ▾
|
"""
Scatterplot with range-selectable data points
Draws a colormapped scatterplot of discrete random data.
In addition to normal zooming and panning on the plot, the user can select
a range of data values by right-dragging in the color bar.
Left-click in the color bar to cancel the range selection.
"""
# Major library imports
from numpy import sort
from numpy.random import random, randint
# Enthought library imports
from enable.api import Component, ComponentEditor
from traits.api import HasTraits, Instance
from traitsui.api import Item, VGroup, View, Label
# Chaco imports
from chaco.api import (
ArrayPlotData,
ColorBar,
ColormappedSelectionOverlay,
HPlotContainer,
LabelAxis,
LinearMapper,
Plot,
)
from chaco.default_colormaps import accent
from chaco.tools.api import (
PanTool,
ZoomTool,
RangeSelection,
RangeSelectionOverlay,
)
# ===============================================================================
# # Create the Chaco plot.
# ===============================================================================
def _create_plot_component():
# Create some data
numpts = 1000
x = sort(random(numpts))
y = random(numpts)
color = randint(0, 7, numpts)
# Create a plot data obect and give it this data
pd = ArrayPlotData()
pd.set_data("index", x)
pd.set_data("value", y)
pd.set_data("color", color)
# Create the plot
plot = Plot(pd)
plot.plot(
("index", "value", "color"),
type="cmap_scatter",
name="my_plot",
color_mapper=accent,
marker="square",
fill_alpha=0.5,
marker_size=6,
outline_color="black",
border_visible=True,
bgcolor="white",
)
# Tweak some of the plot properties
plot.title = "Colormapped Scatter Plot with Range-selectable Data Points"
plot.padding = 50
plot.x_grid.visible = False
plot.y_grid.visible = False
plot.x_axis.font = "modern 16"
plot.y_axis.font = "modern 16"
# Right now, some of the tools are a little invasive, and we need the
# actual ColomappedScatterPlot object to give to them
cmap_renderer = plot.plots["my_plot"][0]
# Attach some tools to the plot
plot.tools.append(PanTool(plot, constrain_key="shift"))
zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
plot.overlays.append(zoom)
selection = ColormappedSelectionOverlay(
cmap_renderer, fade_alpha=0.35, selection_type="mask"
)
cmap_renderer.overlays.append(selection)
# Create the colorbar, handing in the appropriate range and colormap
colorbar = create_colorbar(plot.color_mapper)
colorbar.plot = cmap_renderer
colorbar.padding_top = plot.padding_top
colorbar.padding_bottom = plot.padding_bottom
# Create a container to position the plot and the colorbar side-by-side
container = HPlotContainer(use_backbuffer=True)
container.add(plot)
container.add(colorbar)
container.bgcolor = "lightgray"
return container
def create_colorbar(colormap):
colorbar = ColorBar(
index_mapper=LinearMapper(range=colormap.range),
color_mapper=colormap,
orientation="v",
resizable="v",
width=30,
padding=20,
)
colorbar.grid_visible = False
colorbar._axis.tick_visible = False
colorbar.tools.append(RangeSelection(component=colorbar))
colorbar.overlays.append(
RangeSelectionOverlay(
component=colorbar,
border_color="white",
alpha=0.8,
fill_color="lightgray",
)
)
return colorbar
# ===============================================================================
# Attributes to use for the plot view.
size = (650, 650)
title = "Discrete colormapped scatter plot"
# ===============================================================================
# # Demo class that is used by the demo.py application.
# ===============================================================================
class Demo(HasTraits):
plot = Instance(Component)
traits_view = View(
VGroup(
Label("Right-drag on colorbar to select data range"),
Item("plot", editor=ComponentEditor(size=size), show_label=False),
),
resizable=True,
title=title,
)
def _plot_default(self):
return _create_plot_component()
demo = Demo()
if __name__ == "__main__":
demo.configure_traits()