Repository URL to install this package:
Version:
5.2.1 ▾
|
enable
/
cairo.py
|
---|
# (C) Copyright 2005-2021 Enthought, Inc., Austin, TX
# All rights reserved.
#
# This software is provided without warranty under the terms of the BSD
# license included in LICENSE.txt and may be redistributed only under
# the conditions described in the aforementioned license. The license
# is also available online at http://www.enthought.com/licenses/BSD.txt
#
# Thanks for using Enthought open source!
""" Implementation of the core2d drawing library, using cairo for rendering
:Author: Bryan Cole (bryan@cole.uklinux.net)
:Copyright: Bryan Cole (except parts copied from basecore2d)
:License: BSD Style
This is currently under development and is not yet fully functional.
"""
import copy
import warnings
import cairo
import numpy
from .arc_conversion import arc_to_tangent_points
from . import basecore2d, constants
line_join = {
constants.JOIN_BEVEL: cairo.LINE_JOIN_BEVEL,
constants.JOIN_MITER: cairo.LINE_JOIN_MITER,
constants.JOIN_ROUND: cairo.LINE_JOIN_ROUND,
}
line_cap = {
constants.CAP_BUTT: cairo.LINE_CAP_BUTT,
constants.CAP_ROUND: cairo.LINE_CAP_ROUND,
constants.CAP_SQUARE: cairo.LINE_CAP_SQUARE,
}
font_slant = {
"regular": cairo.FONT_SLANT_NORMAL,
"bold": cairo.FONT_SLANT_NORMAL,
"italic": cairo.FONT_SLANT_ITALIC,
"bold italic": cairo.FONT_SLANT_ITALIC,
}
font_weight = {
"regular": cairo.FONT_WEIGHT_NORMAL,
"bold": cairo.FONT_WEIGHT_BOLD,
"italic": cairo.FONT_WEIGHT_NORMAL,
"bold italic": cairo.FONT_WEIGHT_BOLD,
}
spread_methods = {
"pad": cairo.EXTEND_PAD,
"reflect": cairo.EXTEND_REFLECT,
"repeat": cairo.EXTEND_REPEAT,
}
text_draw_modes = {
"FILL": (
constants.TEXT_FILL,
constants.TEXT_FILL_CLIP,
constants.TEXT_FILL_STROKE,
constants.TEXT_FILL_STROKE_CLIP,
),
"STROKE": (
constants.TEXT_FILL_STROKE,
constants.TEXT_FILL_STROKE_CLIP,
constants.TEXT_STROKE,
constants.TEXT_STROKE_CLIP,
),
"CLIP": (
constants.TEXT_CLIP,
constants.TEXT_FILL_CLIP,
constants.TEXT_FILL_STROKE_CLIP,
constants.TEXT_STROKE_CLIP,
),
"INVISIBLE": constants.TEXT_INVISIBLE,
}
class PixelMap(object):
def __init__(self, surface, width, height):
self.surface = surface
self.width = width
self.height = height
def draw_to_wxwindow(self, window, x, y):
import wx
window_dc = getattr(window, "_dc", None)
if window_dc is None:
window_dc = wx.PaintDC(window)
arr = self.convert_to_rgbarray()
image = wx.EmptyImage(self.width, self.height)
image.SetDataBuffer(arr.data)
bmp = wx.BitmapFromImage(image, depth=-1)
# Scale HiDPI images to fit window
bmp.SetSize(window.GetSize())
window_dc.BeginDrawing()
window_dc.DrawBitmap(bmp, x, y)
window_dc.EndDrawing()
def convert_to_rgbarray(self):
pixels = numpy.frombuffer(self.surface.get_data(), numpy.uint8)
red = pixels[2::4]
green = pixels[1::4]
blue = pixels[0::4]
return numpy.vstack((red, green, blue)).T.flatten()
def convert_to_argbarray(self, flip=False):
pixels = numpy.frombuffer(self.surface.get_data(), numpy.uint8)
alpha = pixels[0::4]
red = pixels[1::4]
green = pixels[2::4]
blue = pixels[3::4]
if flip:
return (
numpy.vstack((alpha, red, green, blue)).T
.reshape((self.height, self.width, 4))[::-1, ...]
.flatten()
)
# no flip
return numpy.vstack((alpha, red, green, blue)).T.flatten()
class GraphicsState(object):
""" Holds information used by a graphics context when drawing.
The Cairo state stores the following:
* Operator (the blend mode)
* Tolerance
* Antialias (bool)
* stroke style (line width, cap, join, mitre-limit, dash-style)
* fill rule
* font face
* scaled font
* font matrix (includes font size)
* font options (antialias, subpixel order, hint style, hint metrics)
* clip region
* target surface and previous target surface
* CTM, CTM-inverse, source CTM
The Quartz2D state (which kiva follows AFAIK) includes:
* CTM
* stroke style (line width, cap, join, mitre, dash)
* clip region
* tolerance (accuracy)
* anti-alias
* fill- and stroke- colors
* fill- and stroke- Color Space (RGB, HSV, CMYK etc.)
* Rendering intent (something to do with Color Spaces)
* alpha value
* blend mode
* text font
* text font size
* text drawing mode (stroked, filled, clipped and combinations of
these)
* text character spacing (extra space between glyphs)
*: items in the Quartz2D state that Cairo doesn't support directly.
basecore2d GraphicsState includes:
* ctm
* line_color
* line_width
* line_join
* line_cap
* line_dash
* fill_color
* alpha
* font
* text_matrix
* clipping_path
* current_point
* should_antialias
* miter_limit
* flatness
* character_spacing
* text_drawing_mode
* rendering_intent (not yet implemented)
*: discrepancies compared to Quartz2D
"""
def __init__(self):
self.fill_color = [1, 1, 1]
self.stroke_color = [1, 1, 1]
self.alpha = 1.0
self.text_drawing_mode = constants.TEXT_FILL
self.has_gradient = False
# not implemented yet...
self.text_character_spacing = None
self.fill_colorspace = None
self.stroke_colorspace = None
self.rendering_intent = None
def copy(self):
return copy.deepcopy(self)
class GraphicsContext(basecore2d.GraphicsContextBase):
def __init__(self, size, *args, **kw):
super().__init__(size, *args, **kw)
w, h = size
self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, w, h)
self.surface.set_device_offset(0, h)
if "context" in kw:
ctx = kw.pop("context")
else:
ctx = cairo.Context(self.surface)
ctx.set_source_rgb(1, 1, 1)
ctx.scale(1, -1)
# For HiDPI support
self.base_scale = kw.pop("base_pixel_scale", 1)
ctx.scale(self.base_scale, self.base_scale)
self._ctx = ctx
self.state = GraphicsState()
self.state_stack = []
# the text-matrix includes the text position
self.text_matrix = cairo.Matrix(
1, 0, 0, -1, 0, 0
) # not part of the graphics state
self.pixel_map = PixelMap(self.surface, w, h)
def clear(self, color=(1, 1, 1)):
self.save_state()
if len(color) == 4:
self._ctx.set_source_rgba(*color)
else:
self._ctx.set_source_rgb(*color)
self.rect(0, 0, self.width(), self.height())
self.draw_path(constants.FILL)
self.restore_state()
def height(self):
return self._ctx.get_target().get_height()
def width(self):
return self._ctx.get_target().get_width()
def scale_ctm(self, sx, sy):
""" Sets the coordinate system scale to the given values, (sx,sy).
Parameters
----------
sx : float
The new scale factor for the x axis
sy : float
The new scale factor for the y axis
"""
self._ctx.scale(sx, sy)
def translate_ctm(self, tx, ty):
""" Translates the coordinate system by the value given by (tx,ty)
Parameters
----------
tx : float
The distance to move in the x direction
ty : float
The distance to move in the y direction
"""
self._ctx.translate(tx, ty)
def rotate_ctm(self, angle):
""" Rotates the coordinate space for drawing by the given angle.
Parameters
----------
angle : float
the angle, in radians, to rotate the coordinate system
"""
self._ctx.rotate(angle)
def concat_ctm(self, transform):
""" Concatenates the transform to current coordinate transform matrix.
Parameters
----------
transform : affine_matrix
the transform matrix to concatenate with
the current coordinate matrix.
"""
try:
# assume transform is a cairo.Matrix object
self._ctx.transform(transform)
except TypeError:
# now assume transform is a list of matrix elements (floats)
self._ctx.transform(cairo.Matrix(*transform))
def get_ctm(self):
""" Returns the current coordinate transform matrix
as a list of matrix elements
"""
return list(self._ctx.get_matrix())
# ----------------------------------------------------------------
# Save/Restore graphics state.
# ----------------------------------------------------------------
def save_state(self):
""" Saves the current graphic's context state.
Always pair this with a `restore_state()`.
"""
self._ctx.save()
self.state_stack.append(self.state)
self.state = self.state.copy()
def restore_state(self):
""" Restores the previous graphics state.
"""
self._ctx.restore()
self.state = self.state_stack.pop()
# ----------------------------------------------------------------
# Manipulate graphics state attributes.
# ----------------------------------------------------------------
def set_antialias(self, value):
""" Sets/Unsets anti-aliasing for bitmap graphics context.
Ignored on most platforms.
"""
if bool(value):
val = cairo.ANTIALIAS_DEFAULT
else:
val = cairo.ANTIALIAS_NONE
self._ctx.set_antialias(val)
def set_line_width(self, width):
""" Sets the line width for drawing
Parameters
----------
width : float
The new width for lines in user space units.
"""
self._ctx.set_line_width(width)
def set_line_join(self, style):
""" Sets the style for joining lines in a drawing.
Parameters
----------
style : join_style
The line joining style. The available
styles are JOIN_ROUND, JOIN_BEVEL, JOIN_MITER.
"""
try:
self._ctx.set_line_join(line_join[style])
except KeyError:
raise ValueError("Invalid line-join style")
def set_miter_limit(self, limit):
""" Specifies limits on line lengths for mitering line joins.
If line_join is set to miter joins, the limit specifies which
line joins should actually be mitered. If lines are not mitered,
they are joined with a bevel. The line width is divided by
the length of the miter. If the result is greater than the
limit, the bevel style is used.
This is not implemented on most platforms.
Parameters
----------
limit : float
limit for mitering joins. defaults to 1.0.
(XXX is this the correct default?)
"""
self._ctx.set_miter_limit(limit)
def set_line_cap(self, style):
""" Specifies the style of endings to put on line ends.
Parameters
----------
style : cap_style
The line cap style to use. Available styles
are CAP_ROUND, CAP_BUTT, CAP_SQUARE.
"""
try:
self._ctx.set_line_cap(line_cap[style])
except KeyError:
raise ValueError("Invalid line cap style")
def set_line_dash(self, pattern, phase=0):
""" Sets the line dash pattern and phase for line painting.
Parameters
----------
pattern : float array
An array of floating point values
specifing the lengths of on/off painting
pattern for lines.
phase : float
Specifies how many units into dash pattern
to start. phase defaults to 0.
"""
if pattern is not None:
pattern = list(pattern)
self._ctx.set_dash(pattern, phase)
def set_flatness(self, flatness):
""" Not implemented
It is device dependent and therefore not recommended by
the PDF documentation.
flatness determines how accurately lines are rendered. Setting it
to values less than one will result in more accurate drawings, but
they take longer. It defaults to None
"""
self._ctx.set_tolerance(flatness)
# ----------------------------------------------------------------
# Sending drawing data to a device
# ----------------------------------------------------------------
def flush(self):
""" Sends all drawing data to the destination device.
Currently this is a NOP for wxPython.
"""
s = self._ctx.get_target()
s.flush()
def synchronize(self):
""" Prepares drawing data to be updated on a destination device.
Currently this is a NOP for all implementations.
"""
pass
# ----------------------------------------------------------------
# Page Definitions
# ----------------------------------------------------------------
def begin_page(self):
""" Creates a new page within the graphics context.
Currently this is a NOP for all implementations. The PDF
backend should probably implement it, but the ReportLab
Canvas uses the showPage() method to handle both
begin_page and end_page issues.
"""
pass
def end_page(self):
""" Ends drawing in the current page of the graphics context.
Currently this is a NOP for all implementations. The PDF
backend should probably implement it, but the ReportLab
Canvas uses the showPage() method to handle both
begin_page and end_page issues.
"""
pass
def radial_gradient(self, cx, cy, r, fx, fy, stops, spreadMethod="pad",
units="userSpaceOnUse", transforms=None):
""" Set a radial gradient as the fill color.
"""
# TODO: handle transforms
if units == "objectBoundingBox":
# transform from relative coordinates
path_rect = self._ctx.path_extents()
width = path_rect[2] - path_rect[0]
height = path_rect[3] - path_rect[1]
r = r * width
cx = path_rect[0] + cx * width
fx = path_rect[0] + fx * width
cy = path_rect[1] + cy * height
fy = path_rect[1] + fy * height
gradient = cairo.RadialGradient(fx, fy, 0.0, cx, cy, r)
gradient.set_extend(
spread_methods.get(spreadMethod, cairo.EXTEND_NONE)
)
for stop in stops:
# FIXME: the stops are possibly being generated wrong if the offset
# is specified
if stop.size == 10:
start = tuple(stop[0:5])
end = tuple(stop[5:10])
gradient.add_color_stop_rgba(*start)
gradient.add_color_stop_rgba(*end)
else:
start = tuple(stop[0:5])
gradient.add_color_stop_rgba(*start)
self.state.has_gradient = True
self._ctx.set_source(gradient)
def linear_gradient(self, x1, y1, x2, y2, stops, spreadMethod="pad",
units="userSpaceOnUse", transforms=None):
""" Set a linear gradient as the fill color.
"""
# TODO: handle transforms
if units == "objectBoundingBox":
# transform from relative coordinates
path_rect = self._ctx.path_extents()
width = path_rect[2] - path_rect[0]
height = path_rect[3] - path_rect[1]
x1 = path_rect[0] + x1 * width
x2 = path_rect[0] + x2 * width
y1 = path_rect[1] + y1 * height
y2 = path_rect[1] + y2 * height
gradient = cairo.LinearGradient(x1, y1, x2, y2)
gradient.set_extend(
spread_methods.get(spreadMethod, cairo.EXTEND_NONE)
)
for stop in stops:
# FIXME: the stops are possibly being generated wrong if the offset
# is specified
if stop.size == 10:
start = tuple(stop[0:5])
end = tuple(stop[5:10])
gradient.add_color_stop_rgba(*start)
gradient.add_color_stop_rgba(*end)
else:
start = tuple(stop[0:5])
gradient.add_color_stop_rgba(*start)
self.state.has_gradient = True
self._ctx.set_source(gradient)
# ----------------------------------------------------------------
# Building paths (contours that are drawn)
#
# + Currently, nothing is drawn as the path is built. Instead, the
# instructions are stored and later drawn. Should this be changed?
# We will likely draw to a buffer instead of directly to the canvas
# anyway.
#
# Hmmm. No. We have to keep the path around for storing as a
# clipping region and things like that.
#
# + I think we should keep the current_path_point hanging around.
#
# ----------------------------------------------------------------
def begin_path(self):
""" Clears the current drawing path and begin a new one.
"""
# Need to check here if the current subpath contains matrix
# transforms. If it does, pull these out, and stick them
# in the new subpath.
self._ctx.new_path()
def move_to(self, x, y):
""" Starts a new drawing subpath and place the current point at (x,y).
Notes:
Not sure how to treat state.current_point. Should it be the
value of the point before or after the matrix transformation?
It looks like before in the PDF specs.
"""
self._ctx.move_to(x, y)
def line_to(self, x, y):
""" Adds a line from the current point to the given point (x,y).
The current point is moved to (x,y).
What should happen if move_to hasn't been called? Should it always
begin at 0,0 or raise an error?
Notes:
See note in move_to about the current_point.
"""
self._ctx.line_to(x, y)
def lines(self, points):
""" Adds a series of lines as a new subpath.
Parameters
----------
points
an Nx2 array of x,y pairs
The current_point is moved to the last point in 'points'
"""
self._ctx.new_sub_path()
for point in points:
self._ctx.line_to(*point)
def line_set(self, starts, ends):
""" Adds a set of disjoint lines as a new subpath.
Parameters
----------
starts
an Nx2 array of x,y pairs
ends
an Nx2 array of x,y pairs
Starts and ends should have the same length.
The current point is moved to the last point in 'ends'.
N.B. Cairo cannot make disjointed lines as a single subpath,
thus each line forms it's own subpath
"""
for start, end in zip(starts, ends):
self._ctx.move_to(*start)
self._ctx.line_to(*end)
def rect(self, x, y, sx, sy):
""" Adds a rectangle as a new subpath.
"""
self._ctx.rectangle(x, y, sx, sy)
def close_path(self, tag=None):
""" Closes the path of the current subpath.
Currently starts a new subpath -- is this what we want?
... Cairo starts a new subpath automatically.
"""
self._ctx.close_path()
def curve_to(self, x_ctrl1, y_ctrl1, x_ctrl2, y_ctrl2, x_to, y_to):
""" Draw a cubic bezier curve from the current point.
Parameters
----------
x_ctrl1 : float
X-value of the first control point.
y_ctrl1 : float
Y-value of the first control point.
x_ctrl2 : float
X-value of the second control point.
y_ctrl2 : float
Y-value of the second control point.
x_to : float
X-value of the ending point of the curve.
y_to : float
Y-value of the ending point of the curve.
"""
self._ctx.curve_to(x_ctrl1, y_ctrl1, x_ctrl2, y_ctrl2, x_to, y_to)
def arc(self, x, y, radius, start_angle, end_angle, cw=False):
""" Draw a circular arc.
If there is a current path and the current point is not the initial
point of the arc, a line will be drawn to the start of the arc. If
there is no current path, then no line will be drawn.
Parameters
----------
x : float
X-value of the center of the arc.
y : float
Y-value of the center of the arc.
radius : float
The radius of the arc.
start_angle : float
The angle, in radians, that the starting point makes with respect
to the positive X-axis from the center point.
end_angle : float
The angles, in radians, that the final point makes with
respect to the positive X-axis from the center point.
cw : bool, optional
Whether the arc should be drawn clockwise or not.
"""
if cw: # not sure if I've got this the right way round
self._ctx.arc_negative(x, y, radius, start_angle, end_angle)
else:
self._ctx.arc(x, y, radius, start_angle, end_angle)
def arc_to(self, x1, y1, x2, y2, radius):
""" Draw an arc between the line segments from the current point
to (x1,y1) and from (x1,y1) to (x2,y2). Straight lines are also
added from the current point to the start of the curve and from the
end of the curve to (x2,y2).
"""
current_point = self.get_path_current_point()
# Get the endpoints on the curve where it touches the line segments
t1, t2 = arc_to_tangent_points(
current_point, (x1, y1), (x2, y2), radius
)
# draw!
self._ctx.line_to(*t1)
self._ctx.curve_to(x1, y1, x1, y1, *t2)
self._ctx.line_to(x2, y2)
# ----------------------------------------------------------------
# Getting infomration on paths
# ----------------------------------------------------------------
def is_path_empty(self):
""" Tests to see whether the current drawing path is empty
What does 'empty' mean???
"""
p = self._ctx.copy_path()
return any(a[0] for a in p)
def get_path_current_point(self):
""" Returns the current point from the graphics context.
Note:
Currently the current_point is only affected by move_to,
line_to, and lines. It should also be affected by text
operations. I'm not sure how rect and rects and friends
should affect it -- will find out on Mac.
"""
return self._ctx.get_current_point()
def get_path_bounding_box(self):
"""
cairo.Context.path_extents not yet implemented on my cairo version.
It's in new ones though.
What should this method return?
"""
if self.is_path_empty():
return [[0, 0], [0, 0]]
p = [a[1] for a in self._ctx.copy_path()]
p = numpy.array(p)
return [p.min(axis=1), p.max(axis=1)]
def add_path(self, path):
"""Draw a compiled path into this gc.
In this case, a compiled path is a Cairo.Path"""
if isinstance(path, CompiledPath):
self.begin_path()
for op_name, op_args in path.state:
op = getattr(self, op_name)
op(*op_args)
self.close_path()
# ----------------------------------------------------------------
# Clipping path manipulation
# ----------------------------------------------------------------
def clip(self):
"""
Should this use clip or clip_preserve
"""
fr = self._ctx.get_fill_rule()
self._ctx.set_fill_rule(cairo.FILL_RULE_WINDING)
self._ctx.clip()
self._ctx.set_fill_rule(fr)
def even_odd_clip(self):
"""
"""
fr = self._ctx.get_fill_rule()
self._ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
self._ctx.clip()
self._ctx.set_fill_rule(fr)
def clip_to_rect(self, x, y, width, height):
"""
Sets the clipping path to the intersection of the current clipping
path with the area defined by the specified rectangle
"""
ctx = self._ctx
# get the current path
p = ctx.copy_path()
ctx.new_path()
ctx.rectangle(x, y, width, height)
ctx.clip()
ctx.append_path(p)
def clear_clip_path(self):
self._ctx.reset_clip()
# ----------------------------------------------------------------
# Color space manipulation
#
# I'm not sure we'll mess with these at all. They seem to
# be for setting the color system. Hard coding to RGB or
# RGBA for now sounds like a reasonable solution.
# ----------------------------------------------------------------
# def set_fill_color_space(self):
# """
# """
# pass
# def set_stroke_color_space(self):
# """
# """
# pass
# def set_rendering_intent(self):
# """
# """
# pass
# ----------------------------------------------------------------
# Color manipulation
# ----------------------------------------------------------------
def _set_source_color(self, color):
if len(color) == 3:
self._ctx.set_source_rgb(*color)
else:
self._ctx.set_source_rgba(*color)
# gradients or other source patterns are blown away by set_source_rgb*
self.state.has_gradient = False
def set_fill_color(self, color):
""" set_fill_color takes a sequences of rgb or rgba values
between 0.0 and 1.0
"""
self.state.fill_color = color
def set_stroke_color(self, color):
""" set_stroke_color takes a sequences of rgb or rgba values
between 0.0 and 1.0
"""
self.state.stroke_color = color
def set_alpha(self, alpha):
"""
"""
self.state.alpha = alpha
# ----------------------------------------------------------------
# Drawing Images
# ----------------------------------------------------------------
def draw_image(self, img, rect=None):
"""
`img` is either a N*M*3 or N*M*4 numpy array, or a PIL Image
`rect` is a tuple (x, y, w, h)
"""
from PIL import Image
if isinstance(img, numpy.ndarray):
# Numeric array
if img.shape[2] == 3:
format = cairo.FORMAT_RGB24
elif img.shape[2] == 4:
format = cairo.FORMAT_ARGB32
img_width, img_height = img.shape[:2]
img_surface = cairo.ImageSurface.create_for_data(
img.astype(numpy.uint8), format, img_width, img_height
)
elif isinstance(img, Image.Image):
converted_img = img.convert("RGBA")
img_width, img_height = img.width, img.height
img_surface = cairo.ImageSurface.create_for_data(
converted_img.flatten(),
cairo.FORMAT_RGB24,
img_width,
img_height,
)
elif hasattr(img, "bmp_array"):
# a kiva agg context
if hasattr(img, "convert_pixel_format"):
img = img.convert_pixel_format("rgba32", inplace=0)
converted_img = Image.fromarray(img.bmp_array)
flipped_array = numpy.flipud(numpy.array(converted_img))
img_width, img_height = img.width, img.height
img_surface = cairo.ImageSurface.create_for_data(
flipped_array.flatten(),
cairo.FORMAT_RGB24,
img.width,
img.height,
)
elif isinstance(img, GraphicsContext):
# Another cairo kiva context
img_width, img_height = img.pixel_map.width, img.pixel_map.height
img_surface = cairo.ImageSurface.create_for_data(
img.pixel_map.convert_to_argbarray(flip=True),
cairo.FORMAT_ARGB32,
img_width,
img_height,
)
else:
msg = "Cannot render image of type '%r' into cairo context."
warnings.warn(msg % type(img))
return
ctx = self._ctx
img_pattern = cairo.SurfacePattern(img_surface)
if rect:
x, y, sx, sy = rect
if sx != img_width or sy != img_height:
scaler = cairo.Matrix()
scaler.scale(img_width / float(sx), img_height / float(sy))
img_pattern.set_matrix(scaler)
img_pattern.set_filter(cairo.FILTER_BEST)
ctx.set_source(img_pattern)
# p = ctx.copy_path() #need to save the path
ctx.new_path()
ctx.rectangle(x, y, sx, sy)
ctx.fill()
else:
ctx.set_source(img_pattern)
ctx.paint()
# -------------------------------------------------------------------------
# Drawing Text
#
# Font handling needs more attention.
#
# -------------------------------------------------------------------------
def select_font(self, face_name, size=12, style="regular", encoding=None):
""" Selects a new font for drawing text.
Parameters
----------
face_name
The name of a font. E.g.: "Times New Roman"
!! Need to specify a way to check for all the types
size
The font size in points.
style
One of "regular", "bold", "italic", "bold italic"
encoding
A 4 letter encoding name. Common ones are:
* "unic" -- unicode
* "armn" -- apple roman
* "symb" -- symbol
Not all fonts support all encodings. If none is
specified, fonts that have unicode encodings
default to unicode. Symbol is the second choice.
If neither are available, the encoding defaults
to the first one returned in the FreeType charmap
list for the font face.
"""
# !! should check if name and encoding are valid.
# self.state.font = freetype.FontInfo(face_name,size,style,encoding)
self._ctx.select_font_face(
face_name, font_slant[style], font_weight[style]
)
self._ctx.set_font_size(size)
def set_font(self, font):
""" Set the font for the current graphics context.
A device-specific font object. In this case, a cairo FontFace
object. It's not clear how this can be used right now.
"""
if font.weight in (constants.BOLD, constants.BOLD_ITALIC):
weight = cairo.FONT_WEIGHT_BOLD
else:
weight = cairo.FONT_WEIGHT_NORMAL
if font.style in (constants.ITALIC, constants.BOLD_ITALIC):
style = cairo.FONT_SLANT_ITALIC
else:
style = cairo.FONT_SLANT_NORMAL
face_name = font.face_name
ctx = self._ctx
ctx.select_font_face(face_name, style, weight)
ctx.set_font_size(font.size)
# facename = font.face_name
# slant = font.style
# self._ctx.set_font_face(font)
def set_font_size(self, size):
""" Sets the size of the font.
The size is specified in user space coordinates.
"""
self._ctx.set_font_size(size)
def set_character_spacing(self, spacing):
""" Sets the amount of additional spacing between text characters.
Parameters
----------
spacing : float
units of space extra space to add between
text coordinates. It is specified in text coordinate
system.
Notes
-----
1. I'm assuming this is horizontal spacing?
2. Not implemented in wxPython, or cairo (for the time being)
"""
self.state.character_spacing = spacing
def set_text_drawing_mode(self, mode):
""" Specifies whether text is drawn filled or outlined or both.
Parameters
----------
mode
determines how text is drawn to the screen. If
a CLIP flag is set, the font outline is added to the
clipping path. Possible values:
TEXT_FILL
fill the text
TEXT_STROKE
paint the outline
TEXT_FILL_STROKE
fill and outline
TEXT_INVISIBLE
paint it invisibly ??
TEXT_FILL_CLIP
fill and add outline clipping path
TEXT_STROKE_CLIP
outline and add outline to clipping path
TEXT_FILL_STROKE_CLIP
fill, outline, and add to clipping path
TEXT_CLIP
add text outline to clipping path
Note:
wxPython currently ignores all but the INVISIBLE flag.
"""
text_modes = (
constants.TEXT_FILL, constants.TEXT_STROKE,
constants.TEXT_FILL_STROKE, constants.TEXT_INVISIBLE,
constants.TEXT_FILL_CLIP, constants.TEXT_STROKE_CLIP,
constants.TEXT_FILL_STROKE_CLIP, constants.TEXT_CLIP,
constants.TEXT_OUTLINE,
)
if mode not in text_modes:
msg = (
"Invalid text drawing mode. See documentation for valid modes"
)
raise ValueError(msg)
self.state.text_drawing_mode = mode
def set_text_position(self, x, y):
"""
"""
m = list(self.text_matrix)
m[4:6] = x, y
self.text_matrix = cairo.Matrix(*m)
def get_text_position(self):
"""
"""
return tuple(self.text_matrix)[4:6]
def set_text_matrix(self, ttm):
"""
"""
if isinstance(ttm, cairo.Matrix):
m = ttm
else:
m = cairo.Matrix(ttm)
self.text_matrix = m
def get_text_matrix(self):
"""
"""
return copy.copy(self.text_matrix)
def show_text(self, text, point=None):
""" Draws text on the device at the current text position.
Leaves the current point unchanged.
"""
if point is not None:
x, y = point
else:
x, y = 0.0, 0.0
self.show_text_at_point(text, x, y)
def show_glyphs(self):
"""
"""
pass
def show_text_at_point(self, text, x, y):
"""
"""
ctx = self._ctx
cur_path = ctx.copy_path()
ctx.save()
ctx.transform(self.text_matrix)
ctx.transform(cairo.Matrix(1, 0, 0, 1, x, y))
ctx.new_path()
ctx.text_path(text)
# need to set up text drawing mode
# 'outline' and 'invisible' modes are not supported.
mode = self.state.text_drawing_mode
if mode in text_draw_modes["STROKE"]:
self._set_source_color(self.state.stroke_color)
ctx.stroke_preserve()
if mode in text_draw_modes["FILL"]:
self._set_source_color(self.state.fill_color)
ctx.fill_preserve()
if mode in text_draw_modes["CLIP"]:
ctx.clip_preserve()
ctx.restore()
ctx.new_path()
ctx.append_path(cur_path)
def show_glyphs_at_point(self):
"""
"""
pass
# ----------------------------------------------------------------
# Painting paths (drawing and filling contours)
# ----------------------------------------------------------------
def draw_path(self, mode=constants.FILL_STROKE):
""" Walks through all the drawing subpaths and draw each element.
Each subpath is drawn separately.
Parameters
----------
mode
Specifies how the subpaths are drawn. The default is
FILL_STROKE. The following are valid values.
FILL
Paint the path using the nonzero winding rule
to determine the regions for painting.
EOF_FILL
Paint the path using the even-odd fill rule.
STROKE
Draw the outline of the path with the
current width, end caps, etc settings.
FILL_STROKE
First fill the path using the nonzero
winding rule, then stroke the path.
EOF_FILL_STROKE
First fill the path using the even-odd
fill method, then stroke the path.
"""
ctx = self._ctx
fr = ctx.get_fill_rule()
if mode in [constants.EOF_FILL, constants.EOF_FILL_STROKE]:
ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
else:
ctx.set_fill_rule(cairo.FILL_RULE_WINDING)
if mode in [constants.FILL, constants.EOF_FILL]:
if not self.state.has_gradient:
self._set_source_color(self.state.fill_color)
ctx.fill()
elif mode == constants.STROKE:
if not self.state.has_gradient:
self._set_source_color(self.state.stroke_color)
ctx.stroke()
elif mode in [constants.FILL_STROKE, constants.EOF_FILL_STROKE]:
if not self.state.has_gradient:
self._set_source_color(self.state.fill_color)
ctx.fill_preserve()
if not self.state.has_gradient:
self._set_source_color(self.state.stroke_color)
ctx.stroke()
ctx.set_fill_rule(fr)
def stroke_rect(self):
"""
How does this affect the current path?
"""
pass
def stroke_rect_with_width(self):
"""
"""
pass
def fill_rect(self):
"""
"""
pass
def fill_rects(self):
"""
"""
pass
def clear_rect(self):
"""
"""
pass
def get_text_extent(self, textstring):
"""
returns the width and height of the rendered text
"""
xb, yb, w, h, xa, ya = self._ctx.text_extents(textstring)
return xb, yb, w, h
def get_full_text_extent(self, textstring):
"""
How does this differ from 'get_text_extent' ???
This just calls get_text_extent, for the time being.
"""
x, y, w, h = self.get_text_extent(textstring)
ascent, descent, height, maxx, maxy = self._ctx.font_extents()
return w, ascent + descent, -descent, height
def render_component(self, component, container_coords=False):
""" Renders the given component.
Parameters
----------
component : Component
The component to be rendered.
container_coords : Boolean
Whether to use coordinates of the component's container
Description
-----------
If *container_coords* is False, then the (0,0) coordinate of this
graphics context corresponds to the lower-left corner of the
component's **outer_bounds**. If *container_coords* is True, then the
method draws the component as it appears inside its container, i.e., it
treats (0,0) of the graphics context as the lower-left corner of the
container's outer bounds.
"""
x, y = component.outer_position
w, h = component.outer_bounds
if not container_coords:
x = -x
y = -y
self.translate_ctm(x, y)
component.draw(self, view_bounds=(0, 0, w, h))
def save(self, filename, file_format=None, pil_options=None):
""" Save the GraphicsContext to a (PNG) file.
file_format is ignored.
"""
self.surface.flush()
self.surface.write_to_png(filename)
class CompiledPath(object):
def __init__(self):
self.state = []
def add_path(self, *args):
self.state.append(("begin_path", args))
def rect(self, *args):
self.state.append(("rect", args))
def move_to(self, *args):
self.state.append(("move_to", args))
def line_to(self, *args):
self.state.append(("line_to", args))
def close_path(self, *args):
self.state.append(("close_path", args))
def quad_curve_to(self, *args):
self.state.append(("quad_curve_to", args))
def curve_to(self, *args):
self.state.append(("curve_to", args))
def arc(self, *args):
self.state.append(("arc", args))
def total_vertices(self):
return len(self.state) + 1
def vertex(self, index):
return (self.state[index - 1][1][0:2],)
def font_metrics_provider():
return GraphicsContext((1, 1))
if __name__ == "__main__":
from numpy import linspace
from scipy.special import jn
from chaco.api import ArrayPlotData, Plot, PlotGraphicsContext
from chaco.example_support import COLOR_PALETTE
from itertools import cycle
DPI = 72.0
dpi_scale = DPI / 72.0
def create_plot():
numpoints = 100
low = -5
high = 15.0
x = linspace(low, high, numpoints)
pd = ArrayPlotData(index=x)
p = Plot(pd, bgcolor="lightgray", padding=50, border_visible=True)
for t, i in zip(cycle(["line", "scatter"]), range(10)):
pd.set_data("y" + str(i), jn(i, x))
p.plot(
("index", "y" + str(i)),
color=tuple(COLOR_PALETTE[i]),
width=2.0 * dpi_scale,
type=t,
)
p.x_grid.visible = True
p.x_grid.line_width *= dpi_scale
p.y_grid.visible = True
p.y_grid.line_width *= dpi_scale
p.legend.visible = True
return p
container = create_plot()
container.outer_bounds = [800, 600]
container.do_layout(force=True)
def render_cairo_png():
w, h = 800, 600
scale = 1.0
s = cairo.ImageSurface(
cairo.FORMAT_ARGB32, int(w * scale), int(h * scale)
)
s.set_device_offset(0, h * scale)
ctx = cairo.Context(s)
ctx.set_source_rgb(1, 1, 1)
ctx.paint()
ctx.scale(1, -1)
ctx.scale(scale, scale)
gc = GraphicsContext((w, h), context=ctx)
gc.render_component(container)
s.flush()
s.write_to_png("/tmp/kiva_cairo.png")
def render_cairo_svg():
w, h = 800, 600
scale = 1.0
s = cairo.SVGSurface("/tmp/kiva_cairo.svg", w * scale, h * scale)
s.set_device_offset(0, h * scale)
ctx = cairo.Context(s)
ctx.set_source_rgb(1, 1, 1)
ctx.paint()
ctx.scale(1, -1)
ctx.scale(scale, scale)
gc = GraphicsContext((w, h), context=ctx)
gc.render_component(container)
s.finish()
def render_cairo_pdf():
w, h = 800, 600
scale = 1.0
s = cairo.PDFSurface("/tmp/kiva_cairo.pdf", w * scale, h * scale)
s.set_device_offset(0, h * scale)
ctx = cairo.Context(s)
ctx.set_source_rgb(1, 1, 1)
ctx.paint()
ctx.scale(1, -1)
ctx.scale(scale, scale)
gc = GraphicsContext((w, h), context=ctx)
gc.render_component(container)
s.finish()
def render_agg():
gc2 = PlotGraphicsContext((800, 600), dpi=DPI)
gc2.render_component(container)
gc2.save("/tmp/kiva_agg.png")
# render_agg()
render_cairo_png()
render_cairo_svg()
render_cairo_pdf()
render_agg()