Repository URL to install this package:
|
Version:
1.0.0-1 ▾
|
#ifndef CAFFE_DATA_LAYERS_HPP_
#define CAFFE_DATA_LAYERS_HPP_
#include <string>
#include <utility>
#include <vector>
#include "boost/scoped_ptr.hpp"
#include "hdf5.h"
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/data_transformer.hpp"
#include "caffe/dataset.hpp"
#include "caffe/filler.hpp"
#include "caffe/internal_thread.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
/**
* @brief Provides base for data layers that feed blobs to the Net.
*
* TODO(dox): thorough documentation for Forward and proto params.
*/
template <typename Dtype>
class BaseDataLayer : public Layer<Dtype> {
public:
explicit BaseDataLayer(const LayerParameter& param);
virtual ~BaseDataLayer() {}
// LayerSetUp: implements common data layer setup functionality, and calls
// DataLayerSetUp to do special data layer setup for individual layer types.
// This method may not be overridden except by the BasePrefetchingDataLayer.
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
// Data layers have no bottoms, so reshaping is trivial.
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {}
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {}
protected:
TransformationParameter transform_param_;
DataTransformer<Dtype> data_transformer_;
Caffe::Phase phase_;
bool output_labels_;
};
template <typename Dtype>
class BasePrefetchingDataLayer :
public BaseDataLayer<Dtype>, public InternalThread {
public:
explicit BasePrefetchingDataLayer(const LayerParameter& param)
: BaseDataLayer<Dtype>(param) {}
virtual ~BasePrefetchingDataLayer() {}
// LayerSetUp: implements common data layer setup functionality, and calls
// DataLayerSetUp to do special data layer setup for individual layer types.
// This method may not be overridden.
void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void CreatePrefetchThread();
virtual void JoinPrefetchThread();
// The thread's function
virtual void InternalThreadEntry() {}
protected:
Blob<Dtype> prefetch_data_;
Blob<Dtype> prefetch_label_;
Blob<Dtype> transformed_data_;
};
template <typename Dtype>
class DataLayer : public BasePrefetchingDataLayer<Dtype> {
public:
explicit DataLayer(const LayerParameter& param)
: BasePrefetchingDataLayer<Dtype>(param) {}
virtual ~DataLayer();
virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_DATA;
}
virtual inline int ExactNumBottomBlobs() const { return 0; }
virtual inline int MinTopBlobs() const { return 1; }
virtual inline int MaxTopBlobs() const { return 2; }
protected:
virtual void InternalThreadEntry();
shared_ptr<Dataset<string, Datum> > dataset_;
Dataset<string, Datum>::const_iterator iter_;
};
/**
* @brief Provides data to the Net generated by a Filler.
*
* TODO(dox): thorough documentation for Forward and proto params.
*/
template <typename Dtype>
class DummyDataLayer : public Layer<Dtype> {
public:
explicit DummyDataLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
// Data layers have no bottoms, so reshaping is trivial.
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_DUMMY_DATA;
}
virtual inline int ExactNumBottomBlobs() const { return 0; }
virtual inline int MinTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {}
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {}
vector<shared_ptr<Filler<Dtype> > > fillers_;
vector<bool> refill_;
};
/**
* @brief Provides data to the Net from HDF5 files.
*
* TODO(dox): thorough documentation for Forward and proto params.
*/
template <typename Dtype>
class HDF5DataLayer : public Layer<Dtype> {
public:
explicit HDF5DataLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual ~HDF5DataLayer();
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
// Data layers have no bottoms, so reshaping is trivial.
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_HDF5_DATA;
}
virtual inline int ExactNumBottomBlobs() const { return 0; }
virtual inline int MinTopBlobs() const { return 1; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {}
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {}
virtual void LoadHDF5FileData(const char* filename);
std::vector<std::string> hdf_filenames_;
unsigned int num_files_;
unsigned int current_file_;
hsize_t current_row_;
std::vector<shared_ptr<Blob<Dtype> > > hdf_blobs_;
};
/**
* @brief Write blobs to disk as HDF5 files.
*
* TODO(dox): thorough documentation for Forward and proto params.
*/
template <typename Dtype>
class HDF5OutputLayer : public Layer<Dtype> {
public:
explicit HDF5OutputLayer(const LayerParameter& param);
virtual ~HDF5OutputLayer();
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
// Data layers have no bottoms, so reshaping is trivial.
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_HDF5_OUTPUT;
}
// TODO: no limit on the number of blobs
virtual inline int ExactNumBottomBlobs() const { return 2; }
virtual inline int ExactNumTopBlobs() const { return 0; }
inline std::string file_name() const { return file_name_; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void SaveBlobs();
std::string file_name_;
hid_t file_id_;
Blob<Dtype> data_blob_;
Blob<Dtype> label_blob_;
};
/**
* @brief Provides data to the Net from image files.
*
* TODO(dox): thorough documentation for Forward and proto params.
*/
template <typename Dtype>
class ImageDataLayer : public BasePrefetchingDataLayer<Dtype> {
public:
explicit ImageDataLayer(const LayerParameter& param)
: BasePrefetchingDataLayer<Dtype>(param) {}
virtual ~ImageDataLayer();
virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_IMAGE_DATA;
}
virtual inline int ExactNumBottomBlobs() const { return 0; }
virtual inline int ExactNumTopBlobs() const { return 2; }
protected:
shared_ptr<Caffe::RNG> prefetch_rng_;
virtual void ShuffleImages();
virtual void InternalThreadEntry();
vector<std::pair<std::string, int> > lines_;
int lines_id_;
};
/**
* @brief Provides data to the Net from memory.
*
* TODO(dox): thorough documentation for Forward and proto params.
*/
template <typename Dtype>
class MemoryDataLayer : public BaseDataLayer<Dtype> {
public:
explicit MemoryDataLayer(const LayerParameter& param)
: BaseDataLayer<Dtype>(param), has_new_data_(false) {}
virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_MEMORY_DATA;
}
virtual inline int ExactNumBottomBlobs() const { return 0; }
virtual inline int ExactNumTopBlobs() const { return 2; }
virtual void AddDatumVector(const vector<Datum>& datum_vector);
// Reset should accept const pointers, but can't, because the memory
// will be given to Blob, which is mutable
void Reset(Dtype* data, Dtype* label, int n);
int batch_size() { return batch_size_; }
int channels() { return channels_; }
int height() { return height_; }
int width() { return width_; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
int batch_size_, channels_, height_, width_, size_;
Dtype* data_;
Dtype* labels_;
int n_;
int pos_;
Blob<Dtype> added_data_;
Blob<Dtype> added_label_;
bool has_new_data_;
};
/**
* @brief Provides data to the Net from windows of images files, specified
* by a window data file.
*
* TODO(dox): thorough documentation for Forward and proto params.
*/
template <typename Dtype>
class WindowDataLayer : public BasePrefetchingDataLayer<Dtype> {
public:
explicit WindowDataLayer(const LayerParameter& param)
: BasePrefetchingDataLayer<Dtype>(param) {}
virtual ~WindowDataLayer();
virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_WINDOW_DATA;
}
virtual inline int ExactNumBottomBlobs() const { return 0; }
virtual inline int ExactNumTopBlobs() const { return 2; }
protected:
virtual unsigned int PrefetchRand();
virtual void InternalThreadEntry();
shared_ptr<Caffe::RNG> prefetch_rng_;
vector<std::pair<std::string, vector<int> > > image_database_;
enum WindowField { IMAGE_INDEX, LABEL, OVERLAP, X1, Y1, X2, Y2, NUM };
vector<vector<float> > fg_windows_;
vector<vector<float> > bg_windows_;
Blob<Dtype> data_mean_;
vector<Dtype> mean_values_;
bool has_mean_file_;
bool has_mean_values_;
bool cache_images_;
vector<std::pair<std::string, Datum > > image_database_cache_;
};
} // namespace caffe
#endif // CAFFE_DATA_LAYERS_HPP_