Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pytorch-lightning / callbacks / callback.py
Size: Mime:
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Base class used to build new callbacks."""

from typing import Any

from torch import Tensor
from torch.optim import Optimizer

import pytorch_lightning as pl
from pytorch_lightning.utilities.types import STEP_OUTPUT


class Callback:
    r"""Abstract base class used to build new callbacks.

    Subclass this class and override any of the relevant hooks

    """

    @property
    def state_key(self) -> str:
        """Identifier for the state of the callback.

        Used to store and retrieve a callback's state from the checkpoint dictionary by
        ``checkpoint["callbacks"][state_key]``. Implementations of a callback need to provide a unique state key if 1)
        the callback has state and 2) it is desired to maintain the state of multiple instances of that callback.

        """
        return self.__class__.__qualname__

    @property
    def _legacy_state_key(self) -> type["Callback"]:
        """State key for checkpoints saved prior to version 1.5.0."""
        return type(self)

    def _generate_state_key(self, **kwargs: Any) -> str:
        """Formats a set of key-value pairs into a state key string with the callback class name prefixed. Useful for
        defining a :attr:`state_key`.

        Args:
            **kwargs: A set of key-value pairs. Must be serializable to :class:`str`.

        """
        return f"{self.__class__.__qualname__}{repr(kwargs)}"

    def setup(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None:
        """Called when fit, validate, test, predict, or tune begins."""

    def teardown(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None:
        """Called when fit, validate, test, predict, or tune ends."""

    def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when fit begins."""

    def on_fit_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when fit ends."""

    def on_sanity_check_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the validation sanity check starts."""

    def on_sanity_check_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the validation sanity check ends."""

    def on_train_batch_start(
        self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int
    ) -> None:
        """Called when the train batch begins."""

    def on_train_batch_end(
        self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int
    ) -> None:
        """Called when the train batch ends.

        Note:
            The value ``outputs["loss"]`` here will be the normalized value w.r.t ``accumulate_grad_batches`` of the
            loss returned from ``training_step``.

        """

    def on_train_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the train epoch begins."""

    def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the train epoch ends.

        To access all batch outputs at the end of the epoch, you can cache step outputs as an attribute of the
        :class:`pytorch_lightning.core.LightningModule` and access them in this hook:

        .. code-block:: python

            class MyLightningModule(L.LightningModule):
                def __init__(self):
                    super().__init__()
                    self.training_step_outputs = []

                def training_step(self):
                    loss = ...
                    self.training_step_outputs.append(loss)
                    return loss


            class MyCallback(L.Callback):
                def on_train_epoch_end(self, trainer, pl_module):
                    # do something with all training_step outputs, for example:
                    epoch_mean = torch.stack(pl_module.training_step_outputs).mean()
                    pl_module.log("training_epoch_mean", epoch_mean)
                    # free up the memory
                    pl_module.training_step_outputs.clear()

        """

    def on_validation_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the val epoch begins."""

    def on_validation_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the val epoch ends."""

    def on_test_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the test epoch begins."""

    def on_test_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the test epoch ends."""

    def on_predict_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the predict epoch begins."""

    def on_predict_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the predict epoch ends."""

    def on_validation_batch_start(
        self,
        trainer: "pl.Trainer",
        pl_module: "pl.LightningModule",
        batch: Any,
        batch_idx: int,
        dataloader_idx: int = 0,
    ) -> None:
        """Called when the validation batch begins."""

    def on_validation_batch_end(
        self,
        trainer: "pl.Trainer",
        pl_module: "pl.LightningModule",
        outputs: STEP_OUTPUT,
        batch: Any,
        batch_idx: int,
        dataloader_idx: int = 0,
    ) -> None:
        """Called when the validation batch ends."""

    def on_test_batch_start(
        self,
        trainer: "pl.Trainer",
        pl_module: "pl.LightningModule",
        batch: Any,
        batch_idx: int,
        dataloader_idx: int = 0,
    ) -> None:
        """Called when the test batch begins."""

    def on_test_batch_end(
        self,
        trainer: "pl.Trainer",
        pl_module: "pl.LightningModule",
        outputs: STEP_OUTPUT,
        batch: Any,
        batch_idx: int,
        dataloader_idx: int = 0,
    ) -> None:
        """Called when the test batch ends."""

    def on_predict_batch_start(
        self,
        trainer: "pl.Trainer",
        pl_module: "pl.LightningModule",
        batch: Any,
        batch_idx: int,
        dataloader_idx: int = 0,
    ) -> None:
        """Called when the predict batch begins."""

    def on_predict_batch_end(
        self,
        trainer: "pl.Trainer",
        pl_module: "pl.LightningModule",
        outputs: Any,
        batch: Any,
        batch_idx: int,
        dataloader_idx: int = 0,
    ) -> None:
        """Called when the predict batch ends."""

    def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the train begins."""

    def on_train_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the train ends."""

    def on_validation_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the validation loop begins."""

    def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the validation loop ends."""

    def on_test_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the test begins."""

    def on_test_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the test ends."""

    def on_predict_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when the predict begins."""

    def on_predict_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called when predict ends."""

    def on_exception(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", exception: BaseException) -> None:
        """Called when any trainer execution is interrupted by an exception."""

    def state_dict(self) -> dict[str, Any]:
        """Called when saving a checkpoint, implement to generate callback's ``state_dict``.

        Returns:
            A dictionary containing callback state.

        """
        return {}

    def load_state_dict(self, state_dict: dict[str, Any]) -> None:
        """Called when loading a checkpoint, implement to reload callback state given callback's ``state_dict``.

        Args:
            state_dict: the callback state returned by ``state_dict``.

        """
        pass

    def on_save_checkpoint(
        self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: dict[str, Any]
    ) -> None:
        r"""Called when saving a checkpoint to give you a chance to store anything else you might want to save.

        Args:
            trainer: the current :class:`~pytorch_lightning.trainer.trainer.Trainer` instance.
            pl_module: the current :class:`~pytorch_lightning.core.LightningModule` instance.
            checkpoint: the checkpoint dictionary that will be saved.

        """

    def on_load_checkpoint(
        self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: dict[str, Any]
    ) -> None:
        r"""Called when loading a model checkpoint, use to reload state.

        Args:
            trainer: the current :class:`~pytorch_lightning.trainer.trainer.Trainer` instance.
            pl_module: the current :class:`~pytorch_lightning.core.LightningModule` instance.
            checkpoint: the full checkpoint dictionary that got loaded by the Trainer.

        """

    def on_before_backward(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", loss: Tensor) -> None:
        """Called before ``loss.backward()``."""

    def on_after_backward(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        """Called after ``loss.backward()`` and before optimizers are stepped."""

    def on_before_optimizer_step(
        self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", optimizer: Optimizer
    ) -> None:
        """Called before ``optimizer.step()``."""

    def on_before_zero_grad(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", optimizer: Optimizer) -> None:
        """Called before ``optimizer.zero_grad()``."""